Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Environ ; 46(8): 2492-2506, 2023 08.
Article in English | MEDLINE | ID: mdl-37303286

ABSTRACT

The site of nitric oxide (NO) production in mitochondrial cytochrome c oxidase and the role of NO in mitochondrial biogenesis are not known in plants. By imposing osmotic stress and recovery on Arabidopsis seedlings we investigated the site of NO production and its role in mitochondrial biogenesis. Osmotic stress reduced growth and mitochondrial number while increasing NO production. During the recovery phase the mitochondrial number increased and this increase was higher in wild type and the high NO-producing Pgb1 silencing line in comparison to the NO-deficient nitrate reductase double mutant (nia1/nia2). Application of nitrite stimulated NO production and mitochondrial number in the nia1/nia2 mutant. Osmotic stress induced COX6b- 3 and COA6-L genes encoding subunits of COX. The mutants cox6b-3 and coa6-l were impaired both in NO production and mitochondrial number during stress to recovery suggesting the involvement of these subunits in nitrite-dependent NO production. Transcripts encoding the mitochondrial protein import machinery showed reduced expression in cox6b-3 and coa6-l mutants. Finally, COX6b-3 and COA6-L interacted with the VQ27 motif-containing protein in the presence of NO. The vq27 mutant was impaired in mitochondrial biogenesis. Our results suggest the involvement of COX derived NO in mitochondrial biogenesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Nitric Oxide/metabolism , Nitrites/metabolism , Organelle Biogenesis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
2.
Front Plant Sci ; 13: 972386, 2022.
Article in English | MEDLINE | ID: mdl-36212370

ABSTRACT

Whitefly-transmitted begomoviruses infect and damage a wide range of food, feed, and fiber crops worldwide. Some of these viruses are associated with betasatellite molecules that are known to enhance viral pathogenesis. In this study, we investigated the function of a novel ßV1 protein encoded by radish leaf curl betasatellite (RaLCB) by overexpressing the protein using potato virus X (PVX)-based virus vector in Nicotiana benthamiana. ßV1 protein induced lesions on leaves, suggestive of hypersensitive response (HR), indicating cell death. The HR reaction induced by ßV1 protein was accompanied by an increased accumulation of reactive oxygen species (ROS), free radicals, and HR-related transcripts. Subcellular localization through confocal microscopy revealed that ßV1 protein localizes to the cellular periphery. ßV1 was also found to interact with replication enhancer protein (AC3) of helper virus in the nucleus. The current findings suggest that ßV1 functions as a protein elicitor and a pathogenicity determinant.

3.
3 Biotech ; 12(6): 130, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35607392

ABSTRACT

Xanthomonas oryzae pv. oryzae (Xoo) is a destructive pathogen that causes bacterial blight disease of rice worldwide. Xoo uses T3SS (type III secretion system) effectors to subvert rice innate immunity. However, the comprehensive knowledge of rice genes involved in T3SS effectors-mediated interaction remains unclear. In this study, the transcriptome profiles of rice infected with a virulent Xoo strain from North-eastern region of India relatives to its avirulent strain (that lacks functional T3SS) were analyzed at early (2-6 hpi) and late (16-24 hpi) hours of infection. Out of total 255 differentially expressed genes (DEGs), during early infection, 62 and 70 genes were upregulated and downregulated, respectively. At late infection, 70 and 53 genes were upregulated and downregulated, respectively. The transcriptomic data identified many differentially expressed resistant genes, transposons, transcription factors, serine/threonine protein kinase, cytochrome P450 and peroxidase genes that are involved in plant defense. Pathway analysis revealed that these DEGs are involved in hormone signaling, plant defense, cellular metabolism, growth and development processes. DEGs associated with plant defense were also validated through quantitative real-time PCR. Our study brings a comprehensive picture of the rice genes that are being differentially expressed during bacterial blight infection. Nevertheless, the DEG-associated pathways would provide sensible targets for developing resistance to bacterial blight. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03193-4.

4.
Virol J ; 18(1): 143, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34243802

ABSTRACT

BACKGROUND: Geminiviruses are circular, single-stranded viruses responsible for enormous crop loss worldwide. Rapid expansion of geminivirus diversity outweighs the continuous effort to control its spread. Geminiviruses channelize the host cell machinery in their favour by manipulating the gene expression, cell signalling, protein turnover, and metabolic reprogramming of plants. As a response to viral infection, plants have evolved to deploy various strategies to subvert the virus invasion and reinstate cellular homeostasis. MAIN BODY: Numerous reports exploring various aspects of plant-geminivirus interaction portray the subtlety and flexibility of the host-pathogen dynamics. To leverage this pool of knowledge towards raising antiviral resistance in host plants, a comprehensive account of plant's defence response against geminiviruses is required. This review discusses the current knowledge of plant's antiviral responses exerted to geminivirus in the light of resistance mechanisms and the innate genetic factors contributing to the defence. We have revisited the defence pathways involving transcriptional and post-transcriptional gene silencing, ubiquitin-proteasomal degradation pathway, protein kinase signalling cascades, autophagy, and hypersensitive responses. In addition, geminivirus-induced phytohormonal fluctuations, the subsequent alterations in primary and secondary metabolites, and their impact on pathogenesis along with the recent advancements of CRISPR-Cas9 technique in generating the geminivirus resistance in plants have been discussed. CONCLUSIONS: Considering the rapid development in the field of plant-virus interaction, this review provides a timely and comprehensive account of molecular nuances that define the course of geminivirus infection and can be exploited in generating virus-resistant plants to control global agricultural damage.


Subject(s)
Geminiviridae , Plant Diseases/virology , Plant Immunity , Plants , Plants/virology
5.
Mol Plant Microbe Interact ; 33(4): 573-575, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32048902

ABSTRACT

Xanthomonas oryzae pv. oryzae, the causal bacterium of bacterial blight limits rice production globally. Currently, genome sequences for only a few X. oryzae pv. oryzae isolates are available from India. Based on the next-generation sequencing and single-molecule sequencing in real-time technologies, we present here the complete genome sequence of X. oryzae pv. oryzae race 4, a highly virulent member of the Indian X. oryzae pv. oryzae population that has been extensively used in different research studies. The genome data will contribute to our understanding of X. oryzae pv. oryzae genomic features and pave the way for research on rice-X. oryzae pv. oryzae interactions.


Subject(s)
Genome, Bacterial , Oryza , Xanthomonas , Genome, Bacterial/genetics , Genomics , Oryza/microbiology , Plant Diseases/microbiology , Xanthomonas/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...