Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(31): e2302668120, 2023 08.
Article in English | MEDLINE | ID: mdl-37490535

ABSTRACT

Catecholamine-stimulated ß2-adrenergic receptor (ß2AR) signaling via the canonical Gs-adenylyl cyclase-cAMP-PKA pathway regulates numerous physiological functions, including the therapeutic effects of exogenous ß-agonists in the treatment of airway disease. ß2AR signaling is tightly regulated by GRKs and ß-arrestins, which together promote ß2AR desensitization and internalization as well as downstream signaling, often antithetical to the canonical pathway. Thus, the ability to bias ß2AR signaling toward the Gs pathway while avoiding ß-arrestin-mediated effects may provide a strategy to improve the functional consequences of ß2AR activation. Since attempts to develop Gs-biased agonists and allosteric modulators for the ß2AR have been largely unsuccessful, here we screened small molecule libraries for allosteric modulators that selectively inhibit ß-arrestin recruitment to the receptor. This screen identified several compounds that met this profile, and, of these, a difluorophenyl quinazoline (DFPQ) derivative was found to be a selective negative allosteric modulator of ß-arrestin recruitment to the ß2AR while having no effect on ß2AR coupling to Gs. DFPQ effectively inhibits agonist-promoted phosphorylation and internalization of the ß2AR and protects against the functional desensitization of ß-agonist mediated regulation in cell and tissue models. The effects of DFPQ were also specific to the ß2AR with minimal effects on the ß1AR. Modeling, mutagenesis, and medicinal chemistry studies support DFPQ derivatives binding to an intracellular membrane-facing region of the ß2AR, including residues within transmembrane domains 3 and 4 and intracellular loop 2. DFPQ thus represents a class of biased allosteric modulators that targets an allosteric site of the ß2AR.


Subject(s)
Arrestin , Signal Transduction , beta-Arrestins/metabolism , Arrestin/metabolism , beta-Arrestin 1/genetics , beta-Arrestin 1/metabolism , Receptors, Adrenergic/metabolism , Receptors, Adrenergic, beta-2/genetics , Receptors, Adrenergic, beta-2/metabolism
3.
J Med Chem ; 64(7): 3747-3766, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33750123

ABSTRACT

Poor metabolic stability of the human immunodeficiency virus type-1 (HIV-1) capsid (CA) inhibitor PF-74 is a major concern in its development toward clinical use. To improve on the metabolic stability, we employed a novel multistep computationally driven workflow, which facilitated the rapid design of improved PF-74 analogs in an efficient manner. Using this workflow, we designed three compounds that interact specifically with the CA interprotomer pocket, inhibit HIV-1 infection, and demonstrate enantiomeric preference. Moreover, using this workflow, we were able to increase the metabolic stability 204-fold in comparison to PF-74 in only three analog steps. These results demonstrate our ability to rapidly design CA compounds using a novel computational workflow that has improved metabolic stability over the parental compound. This workflow can be further applied to the redesign of PF-74 and other promising inhibitors with a stability shortfall.


Subject(s)
Anti-HIV Agents/pharmacology , Capsid Proteins/antagonists & inhibitors , HIV-1/drug effects , Indoles/pharmacology , Amino Acid Sequence , Anti-HIV Agents/chemistry , Anti-HIV Agents/metabolism , Binding Sites , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Cell Line, Tumor , HEK293 Cells , Humans , Indoles/chemistry , Indoles/metabolism , Microbial Sensitivity Tests , Microsomes, Liver/metabolism , Molecular Docking Simulation , Protein Binding , Protein Stability , Stereoisomerism , Workflow
4.
Nature ; 589(7843): 597-602, 2021 01.
Article in English | MEDLINE | ID: mdl-33361818

ABSTRACT

Isoprenoids are vital for all organisms, in which they maintain membrane stability and support core functions such as respiration1. IspH, an enzyme in the methyl erythritol phosphate pathway of isoprenoid synthesis, is essential for Gram-negative bacteria, mycobacteria and apicomplexans2,3. Its substrate, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), is not produced in metazoans, and in humans and other primates it activates cytotoxic Vγ9Vδ2 T cells at extremely low concentrations4-6. Here we describe a class of IspH inhibitors and refine their potency to nanomolar levels through structure-guided analogue design. After modification of these compounds into prodrugs for delivery into bacteria, we show that they kill clinical isolates of several multidrug-resistant bacteria-including those from the genera Acinetobacter, Pseudomonas, Klebsiella, Enterobacter, Vibrio, Shigella, Salmonella, Yersinia, Mycobacterium and Bacillus-yet are relatively non-toxic to mammalian cells. Proteomic analysis reveals that bacteria treated with these prodrugs resemble those after conditional IspH knockdown. Notably, these prodrugs also induce the expansion and activation of human Vγ9Vδ2 T cells in a humanized mouse model of bacterial infection. The prodrugs we describe here synergize the direct killing of bacteria with a simultaneous rapid immune response by cytotoxic γδ T cells, which may limit the increase of antibiotic-resistant bacterial populations.


Subject(s)
Drug Design , Enzyme Inhibitors/pharmacology , Escherichia coli Proteins/antagonists & inhibitors , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/immunology , Lymphocyte Activation/drug effects , Microbial Viability/drug effects , Oxidoreductases/antagonists & inhibitors , T-Lymphocytes, Cytotoxic/drug effects , Animals , Drug Resistance, Microbial , Drug Resistance, Multiple , Enzyme Inhibitors/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Female , Half-Life , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/microbiology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microbial Sensitivity Tests , Molecular Docking Simulation , Oxidoreductases/deficiency , Oxidoreductases/genetics , Oxidoreductases/metabolism , Prodrugs/pharmacokinetics , Prodrugs/pharmacology , Substrate Specificity , Swine/blood , T-Lymphocytes, Cytotoxic/immunology
5.
Bioorg Med Chem Lett ; 29(16): 2259-2264, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31255485

ABSTRACT

Epstein-Barr virus (EBV) is a human herpesvirus that infects over 90% of the world's population that persists as a latent infection in various lymphoid and epithelial malignancies. The total number of EBV associated malignancies is estimated to exceed 200,000 new cancers per year. Current chemotherapeutic treatments of EBV-positive cancers include broad-spectrum cytotoxic drugs that ignore the EBV positive status of tumors and have limited safety and selectivity. In an effort to develop new and more efficacious molecules for inducing EBV reactivation, we have developed high-throughput screening assays to identify a class of small molecules (referred to as the C60 series) that efficiently activate the EBV lytic cycle in multiple latency types, including lymphoblastoid and nasopharyngeal carcinoma cell lines. In this paper we report our preliminary structure activity relationship studies and demonstrate reactivation of EBV in the SNU719 gastric carcinoma mouse model and the AGS-Akata gastric carcinoma mouse model.


Subject(s)
Antineoplastic Agents/pharmacology , Antiretroviral Therapy, Highly Active , Antiviral Agents/pharmacology , Herpesvirus 4, Human/drug effects , Small Molecule Libraries/pharmacology , Stomach Neoplasms/drug therapy , Virus Latency/drug effects , Animals , Antineoplastic Agents/chemistry , Antiviral Agents/chemistry , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Development , Mice , Molecular Structure , Small Molecule Libraries/chemistry , Stomach Neoplasms/virology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...