Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(44): 98848-98857, 2023 Sep.
Article in English | MEDLINE | ID: mdl-35857169

ABSTRACT

The current study deals with a reactivity-controlled compression ignition (RCCI) engine working with 1-pentanol as the LRF and JOBD as the HRF. The composition of the pilot fuel includes 20% Jatropha oil and 80% diesel, which nearly matches the heating value and cetane index of petroleum diesel. The research focuses on studying the impact of the pilot fuel injection angle on the engine characteristics at full load conditions, and the pilot fuel injection angle varies from 19, 21, 23, 25, to 27° bTDC at a constant injection pressure of 600 bar. The results revealed that increasing the pilot fuel injection angle increased the engine performance with a 13.36% rise in BTE, a reduction in CO emissions by 11.03%, and a decrease in HC emissions by 9.28% at a pilot fuel injection angle of 25° bTDC at 30% pentanol energy share (BD70P30). On the other hand, NOx emissions rise by 11.07%. The results indicate that the performance of the ternary fuelled RCCI engine can be improved by increasing the fuel injection angle of the pilot fuel.


Subject(s)
Jatropha , Pentanols , Vehicle Emissions , Biofuels , Gasoline
2.
Environ Sci Pollut Res Int ; 30(28): 72114-72129, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36175726

ABSTRACT

Researchers are examining the possibilities for alternative fuel research as a fossil fuel replacement in light of global energy insecurity and other urgent challenges like global warming, severe emissions, and growing industrialization. This research uses 1-pentanol as a low reactivity fuel and Jatropha biodiesel as a high reactivity fuel to explore the reactivity-controlled compression ignition engine characteristics. A water-cooled single-cylinder engine is used in an experiment with varied loads of 25%, 50%, and 75% at a constant speed of 2000 rpm to examine the effects of operational parameters (i.e., (23 bTDC, 25 bTDC, and 27 bTDC) and (400 bar, 500 bar, and 600 bar)). The fuzzy-based Taguchi approach predicts operational parameters, including fuel injection time, fuel injection pressure, and engine load. Utilizing this ideal model, one may increase brake thermal efficiency and braking power while minimizing unburned hydrocarbon and nitrogen oxide emissions. An L20 orthogonal array is used to analyze the effects of various variables on an engine running on B20/1-pentanol fuel, including engine load, fuel injection timing, and fuel injection pressure. Multiple models are generated and verified with the use of experimental findings. Compared to other operating parameters, for reducing oxides of nitrogen, hydrocarbons, and brake-specific energy consumption maximally, engine load of 75%, FIP of 400 bar, and FIT of 23 bTDC are optimal based on the greatest MPCI value of 0.802.


Subject(s)
Jatropha , Vehicle Emissions , Carbon Monoxide/analysis , Nitrogen Oxides/analysis , Hydrocarbons , Biofuels , Gasoline
SELECTION OF CITATIONS
SEARCH DETAIL
...