Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; : e202400235, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807431

ABSTRACT

The cooperative mechanism is of paramount importance in the synthesis of supramolecular polymers with desired characteristics, including molecular mass, polydispersity, and morphology. It is primarily driven by the presence of intermolecular interactions, which encompass strong hydrogen bonding, metal-ligand interactions, and dipole-dipole interactions. In this study, we utilize density functional theory and energy decomposition analysis to investigate the cooperative behavior of perylene diimide (PDI) oligomers with alkyl chains at their imide positions, which lack the previously mentioned interactions. Our systematic examination reveals that dispersion interactions originating from the alkyl side-chain substituents play an important role in promoting cooperativity within these PDIs. This influence becomes even more pronounced for alkyl chain lengths beyond hexyl groups. The energy decomposition analysis reveals that the delicate balance between dispersion energy and Pauli repulsion energy is the key driver of cooperative behavior in PDIs. Additionally, we have developed a mathematical model capable of predicting the saturated binding energies for PDI oligomers of varying sizes and alkyl chain lengths. Overall, our findings emphasize the previously undervalued significance of dispersion forces in cooperative supramolecular polymerization, enhancing our overall understanding of the cooperative mechanism.

2.
Chem Commun (Camb) ; 48(68): 8487-9, 2012 Sep 04.
Article in English | MEDLINE | ID: mdl-22806410

ABSTRACT

We herein report an unusual CO(2) adsorption behavior in a fluoro-functionalized MOF {[Zn(SiF(6))(pyz)(2)]·2MeOH}(n) (1) with a 1D channel system, which is made up of pyrazine and SiF(6)(2-) moieties. Surprisingly, desolvated 1 (1') adsorbs higher amounts of CO(2) at 298 K than at 195 K, which is in contrast to the usual trend. Combined Raman spectroscopic and theoretical studies reveal that slanted pyrazine rings in 1' with an angle of 17.2° with respect to the (200) Zn(II)-Si plane at low temperature block the channel windows and thus reduce the uptake amount.

3.
Inorg Chem ; 51(13): 7103-11, 2012 Jul 02.
Article in English | MEDLINE | ID: mdl-22716229

ABSTRACT

A three-dimensional (3D) pillared-layer metal-organic framework, [Cd(bipy)(0.5)(Himdc)](DMF)](n) (1), (bipy =4,4'-bipyridine and Himdc = 4,5-imidazoledicarboxylate) has been synthesized and structurally characterized. The highly rigid and stable framework contains a 3D channel structure with highly polar pore surfaces decorated with pendant oxygen atoms of the Himdc linkers. The desolvated framework [Cd(bipy)(0.5)(Himdc)](n) (1') is found to exhibit permanent porosity with high H(2) and CO(2) storage capacities. Two H(2) molecules occluded per unit formula of 1' and the corresponding heat of H(2) adsorption (ΔH(H2)) is about ∼9.0 kJ/mol. The high value of ΔH(H2) stems from the preferential electrostatic interaction of H(2) with the pendent oxygen atoms of Himdc and aromatic bipy linkers as determined from first-principles density functional theory (DFT) based calculations. Similarly, DFT studies indicate CO(2) to preferentially interact electrostatically (C(δ+)···O(δ-)) with the uncoordinated pendent oxygen of Himdc. It also interacts with bipy through C-H···O bonding, thus rationalizing the high heat (ΔH(CO2) ∼ 35.4 kJ/mol) of CO(2) uptake. Our work unveiled that better H(2) or CO(2) storage materials can be developed through the immobilization of reactive hetero atoms (O, N) at the pore surfaces in a metal-organic framework.


Subject(s)
Cadmium/chemistry , Carbon Dioxide/chemistry , Hydrogen/chemistry , Organometallic Compounds/chemistry , Adsorption , Crystallography, X-Ray , Models, Molecular , Organometallic Compounds/chemical synthesis , Quantum Theory , Surface Properties
4.
J Chem Phys ; 134(12): 124511, 2011 Mar 28.
Article in English | MEDLINE | ID: mdl-21456680

ABSTRACT

Using multiple computational tools, we examine five candidate crystal structures for ß-carbonic acid, a molecular crystal of environmental and astrophysical significance. These crystals comprise of hydrogen bonded molecules in either sheetlike or chainlike topologies. Gas phase quantum calculations, empirical force field based crystal structure search, and periodic density functional theory based calculations and finite temperature simulations of these crystals have been carried out. The infrared spectrum calculated from density functional theory based molecular dynamics simulations compares well with experimental data. Results suggest crystals with one-dimensional hydrogen bonding topologies (chainlike) to be more stable than those with two-dimensional (sheetlike) hydrogen bonding networks. We predict that these structures can be distinguished on the basis of their far infrared spectra.

SELECTION OF CITATIONS
SEARCH DETAIL
...