Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 33(34)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-34325410

ABSTRACT

The effective dissipation of heat from electronic devices is essential to enable their long-term operation and their further miniaturization. Graphene foams (GF) and carbon nanotube (CNT) forests are promising materials for thermal applications, including heat dissipation, due to their excellent thermal conduction and low thermal interface resistance. Here, we study the heat transfer characteristics of these two materials under forced convection. We applied controlled airflow to heated samples of GF and CNT forests while recording their temperature using infrared micro-thermography. Then, we analyzed the samples using finite-element simulations in conjunction with a genetic optimization algorithm, and we extracted their heat fluxes in both the horizontal and vertical directions. We found that boundary layers have a profound impact on the heat transfer characteristics of our samples, as they reduce the heat transfer in the horizontal direction. The heat transfer in the vertical direction, on the other hand, is dominated by the material conduction and is much higher than the horizontal heat transfer. Accordingly, we uncover the fundamental thermal behavior of GF and CNT forests, paving the way toward their successful integration into thermal applications, including cooling devices.

2.
ACS Appl Mater Interfaces ; 12(26): 29959-29970, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32500702

ABSTRACT

Here, the actuation response of an architectured electrothermal actuator comprising a single layer of carbon nanotube (CNT) film and a relatively thicker film of silk, cellulose, or polydimethylsiloxane is studied. An electric current is passed through the CNT film, which generates heat responsible for electrothermal actuation, in all samples, affixed as per doubly clamped beam configuration. All samples, including pure CNT film, show remarkable actuation such that actuation monotonically increases with the applied voltage. Cyclic pulsed electrical loading shows a lag in the electric current stimulus and the actuation. Remarkably, an ultrahigh actuation of ∼2.8%, which was 72 times more than that shown by pure CNT film, is measured in the CNT-cellulose film, that is, the architectured actuator with the natural polymer having the functional property of hygroexpansion and the structural hierarchy of the CNT film, however, at a significantly larger length scale. Overall, the synergetic contribution of the individual layers in these bilayered actuators enabled achieving ultrahigh electrothermal actuation compared to the homogeneous, synthetic polymer-based devices. A detailed discussion, which also includes examination of the role of the hierarchical substructure and the functional properties of the substrate and numerical analysis using the finite element method, is presented to highlight the actuation mechanism in the fabricated actuators.

3.
Nanotechnology ; 30(50): 505705, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-31491776

ABSTRACT

The continuous miniaturization of electronic devices substantially increases their power density, and consequently, requires effective cooling of these components. Vertically aligned carbon nanotubes (VA-CNTs) constitute one of the most promising materials for use as a high-end heat dissipation element due to their high thermal conductivity and large surface area. However, the lack of a clear understanding of the heat transfer mechanisms of VA-CNTs has so far impeded their large-scale use as cooling elements. Our infrared micro-thermography analysis revealed that the heat dissipation of VA-CNTs is determined mainly by their height, such that the heat dissipation behavior of tall samples was dominated by convection from the carbon nanotube (CNT) sidewalls. The mechanism of heat transfer in short VA-CNTs, in contrast, was determined by their morphology. Short VA-CNTs with highly organized CNT formations or with low thermal conductance exhibited convective heat dissipation similar to that of tall VA-CNTs, while other short VA-CNTs exhibited heat transfer dominated by conduction along the CNTs. This study provides important guidelines regarding the parameters that can be changed to optimize the performances of VA-CNTs in thermal applications. These applications include cooling elements in electronic devices, where convection is required, or thermal interface materials, where conduction is required.

4.
Nanotechnology ; 26(19): 195502, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25900408

ABSTRACT

Recently, graphene has attracted much attention due to its unique electrical and thermal properties along with its high surface area, and hence presents an ideal sensing material. We report a novel configuration of a graphene based flame sensor by exploiting the response of few layer graphene to a flame along two different directions, where flame detection results from a difference in heat transfer mechanisms. A complete sensor module was developed with a signal conditioning circuit that compensates for any drift in the baseline of the sensor, along with a flame detection algorithm implemented in a microcontroller to detect the flame. A pre-defined threshold for either of the sensors is tunable, which can be varied based on the nature of the flame, hence presenting a system that can be used for detection of any kind of flame. This finding also presents a scalable method that opens avenues to modify complicated sensing schemes.

5.
ACS Appl Mater Interfaces ; 6(10): 7485-90, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24779774

ABSTRACT

A novel approach is presented for achieving an enhanced photoresponse in a few layer graphene (FLG) based photodetector that is realized by introducing defect sites in the FLG. Fabrication induced wrinkle formation in graphene presented a four-fold enhancement in the photocurrent when compared to unfold FLG. Interestingly, it was observed that the addition of few multiwalled carbon nanotubes to an FLG improves the photocurrent by two-fold along with a highly stable response as compared to FLG alone.

SELECTION OF CITATIONS
SEARCH DETAIL
...