Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 86(7): 4977-4985, 2021 04 02.
Article in English | MEDLINE | ID: mdl-33634692

ABSTRACT

Remdesivir, an inhibitor of RNA-dependent RNA polymerase developed by Gilead Sciences, has been used for the treatment of COVID-19. The synthesis of remdesivir is, however, challenging, and the overall cost is relatively high. Particularly, the stereoselective assembly of the P-chirogenic center requires recrystallization of a 1:1 isomeric p-nitrophenylphosphoramidate mixture several times to obtain the desired diastereoisomer (39%) for further coupling with the d-ribose-derived 5-alcohol. To address this problem, a variety of chiral bicyclic imidazoles were synthesized as organocatalysts for stereoselective (S)-P-phosphoramidation employing a 1:1 diastereomeric mixture of phosphoramidoyl chloridates as the coupling reagent to avoid a waste of the other diastereomer. Through a systematic study of different catalysts at different temperatures and concentrations, a mixture of the (S)- and (R)-P-phosphoramidates was obtained in 97% yield with a 96.1/3.9 ratio when 20 mol % of the chiral imidazole-cinnamaldehyde-derived carbamate was utilized in the reaction at -20 °C. A 10-g scale one-pot synthesis via a combination of (S)-P-phosphoramidation and protecting group removal followed by one-step recrystallization gave remdesivir in 70% yield and 99.3/0.7 d.r. The organocatalyst was recovered in 83% yield for reuse, and similar results were obtained. This one-pot process offers an excellent opportunity for industrial production of remdesivir.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/chemical synthesis , Adenosine Monophosphate/chemical synthesis , Alanine/chemical synthesis
2.
Org Lett ; 20(9): 2572-2575, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29652157

ABSTRACT

Hitherto unknown catalytic enantioselective transformation of p-quinone diimides is achieved using chiral bifunctional organic molecules. Bifunctional thiourea compounds catalyze the Michael addition of cyanoacetates with excellent yields and enantioselectivities. The initially formed Michael adducts undergo cyclization to yield functionally rich, fused cyclic imidines bearing a quaternary benzylic chiral center. Density functional theory calculations of the competing transition states (TSs) were carried out to explain the observed stereochemical outcome.

SELECTION OF CITATIONS
SEARCH DETAIL
...