Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Metab Dispos ; 50(4): 361-373, 2022 04.
Article in English | MEDLINE | ID: mdl-35086846

ABSTRACT

CPI-613, an inhibitor of pyruvate dehydrogenase (PDH) and α-ketoglutarate dehydrogenase (KGDH) enzymes, is currently in development for the treatment of pancreatic cancer, acute myeloid leukemia, and other cancers. CPI-613 is an analog of lipoic acid, an essential cofactor for both PDH and KGDH. Metabolism and mass balance studies were conducted in rats after intravenous administration of [14C]-CPI-613. CPI-613 was eliminated via oxidative metabolism followed by excretion of the metabolites in feces (59%) and urine (22%). ß-Oxidation was the major pathway of elimination for CPI-613. The most abundant circulating components in rat plasma were those derived from ß-oxidation. In human hepatocytes, CPI-613 mainly underwent ß-oxidation (M1), sulfur oxidation (M2), and glucuronidation (M3). The Michaelis-Menten kinetics (Vmax and Km) of the metabolism of CPI-613 to these three metabolites predicted the fraction metabolized leading to the formation of M1, M2, and M3 to be 38%, 6%, and 56%, respectively. In humans, after intravenous administration of CPI-613, major circulating species in plasma were the parent and the ß-oxidation derived products. Thus, CPI-613 metabolites profiles in rat and human plasma were qualitatively similar. ß-Oxidation characteristics and excretion patterns of CPI-613 are discussed in comparison with those reported for its endogenous counterpart, lipoic acid. SIGNIFICANCE STATEMENT: This work highlights the clearance mechanism of CPI-613 via ß-oxidation, species differences in their ability to carry out ß-oxidation, and subsequent elimination routes. Structural limitations for completion of terminal cycle of ß-oxidation is discussed against the backdrop of its endogenous counterpart lipoic acid.


Subject(s)
Caprylates , Neoplasms , Animals , Caprylates/metabolism , Hepatocytes/metabolism , Humans , Neoplasms/metabolism , Rats , Sulfides/metabolism
2.
Drug Metab Dispos ; 41(12): 2206-14, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24088325

ABSTRACT

The objective of the current study was to evaluate the mechanism of absorption and metabolism of a PEGylated peptide, MRL-1 (46 kDa), after s.c. dosing in dogs and rats. Thoracic lymph duct-cannulated (LDC) dog and rat models were developed that allowed continuous collection of lymph for up to 8 days. When [(3)H]MRL-1 was administered s.c. to LDC dogs, ∼73% of the administered radioactivity was recovered in pooled lymph over a period of 120 hours, suggesting that lymphatic uptake is the major pathway of s.c. absorption for this peptide. In agreement with these data, the systemic exposure of radioactivity related to [(3)H]MRL-1 in LDC dogs was decreased proportionately when compared with that in noncannulated control dogs. After i.v. dosing with [(3)H]MRL-1 in LDC dogs, 20% of the administered radioactivity was recovered in pooled lymph over 168 hours, suggesting some level of recirculation of radioactivity related to [(3)H]MRL-1 from the plasma compartment into the lymphatic system. Experiments conducted in the LDC rat model also resulted in similar conclusions. Analysis of injection site s.c. tissue showed significant metabolism of [(3)H]MRL-1, which provides an explanation for the <100% bioavailability of therapeutic proteins and peptides after s.c. dosing. After s.c. dosing, the major circulating components in plasma were the parent peptide and the PEG-linker [(3)H]MRL-2. The metabolism profiles in lymph were similar to those in plasma, suggesting that the loss of peptide was minimal during lymphatic transport. After i.v. dosing in rats, [(3)H]MRL-1 was metabolized and excreted primarily in the urine as metabolites.


Subject(s)
Benzopyrans/metabolism , Lymphatic System/metabolism , Absorption , Administration, Cutaneous , Administration, Intravenous/methods , Animals , Biological Availability , Biological Transport/physiology , Dogs , Male , Rats , Rats, Sprague-Dawley
3.
Xenobiotica ; 40(10): 691-700, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20722472

ABSTRACT

Taranabant (N-[(1S,2S)-3-(4-chlorophenyl)-2-(3-cyanophenyl)-1-methylpropyl]-2-methyl-2-{[5-(trifluoromethyl)pyridin-2-yl]oxy}propanamide or MK-0364) is an orally active inverse agonist of the cannabinoid 1 (CB-1) receptor that was under development for the management of obesity. The metabolism and excretion of taranabant were investigated following a single oral dose of 5 mg/201 µCi [14C]taranabant to six healthy male subjects. The overall excretion recovery of the administered radioactivity was nearly quantitative (∼92%), with the majority of the dose (∼87%) excreted into faeces and a much smaller fraction (∼5%) into urine. Taranabant was absorbed rapidly, with C(max) of radioactivity attained at 1-2-h postdose. The parent compound and its monohydroxylated metabolite, M1, were the major radioactive components circulating in plasma and comprised ∼12-24% and 33-42%, respectively, of the plasma radioactivity for up to 48 h. A second monohydroxylated metabolite, designated as M1a, represented ∼10-12% of the radioactivity in the 2- and 8-h postdose plasma profiles. Metabolite profiles of the faeces samples consisted mainly of the (unabsorbed) parent compound and multiple diastereomeric carboxylic acid derivatives derived from oxidation of the geminal methyl group of the parent compound and of the hydroxylated metabolite/s. These data suggest that, similar to rats and monkeys, taranabant is primarily eliminated in humans via oxidative metabolism and excretion of metabolites via the biliary/faecal route.


Subject(s)
Amides/pharmacokinetics , Pyridines/pharmacokinetics , Receptor, Cannabinoid, CB1/agonists , Amides/analysis , Amides/metabolism , Carbon Radioisotopes/analysis , Drug Inverse Agonism , Feces/chemistry , Humans , Male , Pyridines/analysis , Pyridines/metabolism
4.
Drug Metab Dispos ; 38(1): 108-14, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19797605

ABSTRACT

MRL-1, a cannabinoid receptor-1 inverse agonist, was a member of a lead candidate series for the treatment of obesity. In rats, MRL-1 is eliminated mainly via metabolism, followed by excretion of the metabolites into bile. The major metabolite M1, a glutathione conjugate of MRL-1, was isolated and characterized by liquid chromatography/mass spectrometry and NMR spectroscopic methods. The data suggest that the t-butylsulfonyl group at C-2 of furopyridine was displaced by the glutathionyl group. In vitro experiments using rat and monkey liver microsomes in the presence of reduced glutathione (GSH) showed that the formation of M1 was independent of NADPH and molecular oxygen, suggesting that this reaction was not mediated by an oxidative reaction and a glutathione S-transferase (GST) was likely involved in catalyzing this reaction. Furthermore, a rat hepatic GST was capable of catalyzing the conversion of MRL-1 to M1 in the presence of GSH. When a close analog of MRL-1, a p-chlorobenzenesulfonyl furopyridine derivative (MRL-2), was incubated with rat liver microsomes in the presence of GSH, p-chlorobenzene sulfinic acid (M2) was also identified as a product in addition to the expected M1. Based on these data, a mechanism is proposed involving direct nucleophilic addition of GSH to sulfonylfuropyridine, resulting in an unstable adduct that spontaneously decomposes to form M1 and M2.


Subject(s)
Biocatalysis , Glutathione Transferase/metabolism , Pyridines/pharmacokinetics , Sulfur Compounds/pharmacokinetics , Animals , Bile/chemistry , Biotransformation/physiology , Chromatography, Liquid , Cytosol/metabolism , Dogs , Glutathione/metabolism , Haplorhini , Humans , Liver/enzymology , Magnetic Resonance Spectroscopy , Male , Microsomes, Liver/enzymology , Molecular Structure , NADP/metabolism , Pyridines/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Species Specificity , Sulfur Compounds/metabolism , Tandem Mass Spectrometry
5.
Chem Res Toxicol ; 18(5): 880-8, 2005 May.
Article in English | MEDLINE | ID: mdl-15892582

ABSTRACT

Thiazolidinedione (TZD) derivatives have been reported to undergo metabolic activation of the TZD ring to produce reactive intermediates. In the case of troglitazone, it was proposed that a P450-mediated S-oxidation leads to TZD ring scission and the formation of a sulfenic acid intermediate, which may be trapped as a GSH conjugate. In the present study, we employed a model compound {denoted MRL-A, (+/-)-5-[(2,4-dioxothiazolidin-5-yl)methyl]-2-methoxy-N-[[(4-trifluoromethoxy)phenyl]methyl]benzamide} to investigate the mechanism of TZD ring scission. When MRL-A was incubated with monkey liver microsomes (or recombinant P450 3A4 and NADPH-P450 reductase) in the presence of NADPH and oxygen, the major products of TZD ring scission were the free thiol metabolite (M2) and its dimer (M3). Furthermore, a GSH conjugate of M2 (M4) also was formed when the incubation mixture was supplemented with GSH. Experiments with isolated M2 suggested that this metabolite was unstable and underwent spontaneous autooxidation to M3. A qualitatively similar metabolite profile was observed when MRL-A was incubated with recombinant P450 3A4 and cumene hydroperoxide. Because an oxygen atom is transferred to MRL-A under these conditions, these data suggested that S-oxidation alone may result in TZD ring scission and formation of M2 via a sulfenic acid intermediate. Also, because the latter incubation mixture did not contain any reducing agents, the formation of M2 may have occurred due to disproportionation of the sulfenic acid. When NADPH was added to the incubation mixture containing P450 3A4 and cumene hydroperoxide, the formation of M3 increased, suggesting that the sulfenic acid was reduced to M2 by NADPH and subsequently underwent dimerization to yield M3 (vide supra). When NADPH was replaced by GSH, the formation of M4 increased, consistent with reduction of the sulfenic acid by GSH. In summary, these results suggest that the TZD ring in MRL-A is activated by an initial P450-mediated S-oxidation step followed by spontaneous scission of the TZD ring to a putative sulfenic acid intermediate; the latter species then undergoes reduction to the free thiol by GSH, NADPH, and/or disproportionation. Finally, the thiol may dimerize to the corresponding disulfide or, in the presence of S-adenosylmethionine, form the stable S-methyl derivative.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Microsomes, Liver/drug effects , Sulfhydryl Compounds/metabolism , Thiazolidinediones/metabolism , Animals , Benzamides/chemistry , Benzamides/metabolism , Benzene Derivatives/metabolism , Dimerization , Disulfides/chemistry , Disulfides/metabolism , Glutathione/metabolism , Haplorhini , Microsomes, Liver/enzymology , Models, Chemical , NADP/metabolism , Oxidation-Reduction , Oxygen/metabolism , S-Adenosylmethionine/chemistry , S-Adenosylmethionine/metabolism , Sulfhydryl Compounds/chemistry , Thiazolidinediones/chemistry , Thiazolidinediones/pharmacology
6.
Drug Metab Dispos ; 32(10): 1154-61, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15229171

ABSTRACT

MK-0767 [(+/-)-5-[(2,4-dioxothiazolidin-5-yl)methyl]-2-methoxy-N-[[(4-trifluoromethyl)phenyl]methyl]benzamide] is a novel thiazolidinedione-containing peroxisome proliferator-activated receptor alpha/gamma agonist. In rats dosed orally with [14C]MK-0767, a dihydrohydroxy-S-glutathionyl conjugate of the parent compound was identified in the bile using liquid chromatography-mass spectometry and 1H NMR techniques. The formation of the conjugate likely proceeded via an arene oxide intermediate. The corresponding cysteinylglycine and cysteinyl conjugates likely formed from the further metabolism of the dihydrohydroxy-S-glutathionyl conjugate also were detected in rat bile. The dihydrohydroxy-S-glutathionyl conjugate was formed in vitro following the incubation of MK-0767 and glutathione with rat, dog, or monkey liver microsomes, and its formation was NADPH-dependent; however, this conjugate was not detected in human liver microsomal incubations. When incubated with rat intestinal contents, the dihydrohydroxy-S-glutathionyl conjugate was reduced to the parent compound (MK-0767), suggesting the involvement of intestinal microflora in its metabolism. There was no reduction of the conjugate by rat intestinal cytosol.


Subject(s)
Glutathione/metabolism , Peroxisome Proliferator-Activated Receptors/agonists , Peroxisome Proliferator-Activated Receptors/metabolism , Thiazoles/metabolism , Animals , Dogs , Glutathione/analysis , Humans , Intestine, Small/metabolism , Macaca mulatta , Male , Microsomes, Liver/metabolism , Peroxisome Proliferator-Activated Receptors/analysis , Rats , Rats, Sprague-Dawley , Thiazoles/analysis , Thiazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...