Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(42): 64150-64161, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35471763

ABSTRACT

The distribution and possible sources of particulate organic carbon (POC) and particulate nitrogen (PN) in seven mangroves ecosystems along the east and west coast of India were examined, to understand their contribution to coastal biogeochemistry. Suspended particulate matter (SPM) concentration in mangrove waters were about ~ 1.6-fold higher in west coast (Gulf of Kachchh (GOK), Mandovi-Zuari (MA-ZU) and Karwar-Kumta (KR-KU)], whereas the mean POC content in SPM along east coast [Sundarbans (SUN), Bhitarkanika (BHK), Coringa (COR) and Pichavaram-Muthupet (PI-MU)] was nearly two times higher than the west coast (1.97 ± 0.91% and 1.06 ± 0.29%), respectively. The results indicated that the influence of the land-based contaminants on the water quality parameters (dissolved oxygen, pH, salinity, nutrients and chlorophyll-a, etc.), which primarily regulated the distribution and transformation of organic carbon in these mangrove waters. Among the studied systems, an extremely high DOC/POC ratio (5.72 ± 1.64) with low pH and DO in COR waters clearly indicated the labile nature of the organic matter influenced by anthropogenic stress. Strong correlation between POC and PN indicated a similar origin in particulate organic matter. The ratios of POC/PN and POC/Chl-a showed significant spatial variation ranging from 5.5 to 18.7 and 126 to 1057, respectively. The results indicated that significant fraction of in-situ primary production contributed to particulate organic matter (POM) pool in all Indian mangrove waters except the GOK and the SUN waters, where sediment resuspension and mangrove derived organic matter were the dominant POM sources.


Subject(s)
Ecosystem , Particulate Matter , Carbon/analysis , Chlorophyll/analysis , Environmental Monitoring , Nitrogen/analysis , Oxygen , Particulate Matter/analysis
2.
Environ Sci Pollut Res Int ; 28(31): 42051-42069, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33791968

ABSTRACT

Efficient nutrient cycling and adequate sediment bioavailable nutrient supply are considered to be the two most important factors regulating the high productivity and subsequent carbon sequestration by mangrove ecosystems. We assessed spatial variability and the possible regulating factors of sediment bioavailable nutrients (nitrogen (N) and phosphorus (P)) and surface water-dissolved nutrients (N, P and silicate (Si)) in the five ecologically important mangrove ecosystems along the east and west coast of India during dry season. Higher bioavailable nitrogen concentrations in the sediments were recorded in Coringa mangroves (36.27 ± 14.7 µg g-1) and Bhitarkanika (18.54 ± 5.9 µg g-1) mangroves in the east coast followed by Karnataka (15.51 ± 8.26 µg g-1), Goa, (10.18 ± 9.96 µg g-1) and Kerala (6.36 ± 5.05 µg g-1) mangroves in the west coast. The dissolved inorganic nutrients in the mangrove waters ranged between 5.1 and 220.9 µmol l-1 for N and 0.07 and 3.9 µmol l-1 for P. These results indicated that terrestrial inputs, in situ remineralization and prevalent anoxic conditions regulated sediment nutrient content in these ecosystems, whereas the higher ammonium in the sediments was attributed to the greater nutrient adsorption by finer particles. The stoichiometry of the bioavailable nutrients (N, P) in the mangrove sediments deviated drastically from the Redfield ratio, and strong P limitation was recorded in most of the ecosystems. The results highlighted the potential role of sediment particle size and physiochemical (salinity and pH) properties in regulating bioavailable nutrient dynamics in mangrove sediments.


Subject(s)
Nitrogen , Phosphorus , Ecosystem , Environmental Monitoring , Geologic Sediments , India , Nitrogen/analysis , Phosphorus/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...