Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 22(1): 199-210, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26611940

ABSTRACT

Large zeolite crystals of ferrierite have been used to study the deactivation, at the single particle level, of the alkyl isomerisation catalysis of oleic acid and elaidic acid by a combination of visible micro-spectroscopy and fluorescence microscopy (both polarised wide-field and confocal modes). The large crystals did show the desired activity, albeit only traces of the isomerisation product were obtained and low conversions were achieved compared to commercial ferrierite powders. This limited activity is in line with their lower external non-basal surface area, supporting the hypothesis of pore mouth catalysis. Further evidence for the latter comes from visible micro-spectroscopy, which shows that the accumulation of aromatic species is limited to the crystal edges, while fluorescence microscopy strongly suggests the presence of polyenylic carbocations. Light polarisation associated with the spatial resolution of fluorescence microscopy reveals that these carbonaceous deposits are aligned only in the larger 10-MR channels of ferrierite at all crystal edges. The reaction is hence further limited to these specific pore mouths.


Subject(s)
Mouth/chemistry , Oleic Acid/chemistry , Zeolites/chemistry , Catalysis , Isomerism , Microscopy, Fluorescence , Oleic Acid/chemical synthesis
2.
Solid State Nucl Magn Reson ; 35(2): 130-7, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19348979

ABSTRACT

SBA-15 was utilized as mesoporous support for the dispersion of vanadium phosphate (VPO) compounds. Loading of SBA-15 with VPO compounds was found to be accompanied by decreasing (29)Si MAS NMR signals of Q(2) (Si(2Si,2OH)) and Q(3) (Si(3Si,1OH)) silicon species, which indicates coverage of the mesoporous support by the guest compounds. The (51)V MAS NNR spectra of the activated VPO/SBA-15 catalysts consist of patterns typical for the alpha(II)- and beta-phases of vanadyl orthophosphate. In the (31)P MAS NMR spectra of the activated VPO/SBA-15 catalysts, signals of beta-, delta-, and alpha(II)-VOPO(4) phases could be identified. Upon conversion of n-butane-(13)C(4), a strong decrease of the (31)P MAS NMR signals characteristic for the delta-VOPO(4) phase occurred, while by (13)C MAS NMR spectroscopy the formation of maleic anhydride, carbon monoxide, and carbon dioxide was observed. This finding supports the active role of the delta-VOPO(4) phase in the selective oxidation of n-butane on VPO/SBA-15 catalysts.


Subject(s)
Butanes/chemistry , Magnetic Resonance Spectroscopy/methods , Models, Chemical , Models, Molecular , Phosphates/chemistry , Vanadium Compounds/chemistry , Catalysis , Computer Simulation , Molecular Conformation , Oxidation-Reduction , Porosity , Powders
3.
J Phys Chem B ; 110(28): 13812-8, 2006 Jul 20.
Article in English | MEDLINE | ID: mdl-16836328

ABSTRACT

The effect of adsorbate molecules on the quadrupolar interaction of framework aluminum atoms with the electric field gradient in dehydrated zeolite H,Na-Y has been studied by (27)Al MAS NMR and (27)Al MQMAS NMR spectroscopy at magnetic fields of 9.4 and 17.6 T. Upon adsorption of molecules interacting with bridging OH groups by hydrogen bonds (acetonitrile and acetone), the quadrupole coupling constant of framework aluminum atoms was found to decrease from 16.0 MHz (unloaded zeolite) to 9.4 MHz. Adsorption of molecules, which cause a proton transfer from the zeolite framework to the adsorbates (ammonia and pyridine), reduces the quadrupole coupling constant to 3.8 MHz for coverages of 0.5-2 molecules per bridging OH group. The experiments indicate that the quadrupole coupling constant of framework aluminum atoms in dehydrated zeolite H,Na-Y reflects the chemical state of adsorbate complexes formed at bridging OH groups. In agreement with earlier investigations it was found that a proton affinity of the adsorbate molecules of PA = 812-854 kJ/mol is necessary to induce a proton transfer from the zeolite framework to the adsorbed compounds. This proton transfer is accompanied by a strong improvement of the tetrahedral symmetry of zeolitic framework AlO(4) tetrahedra and a decrease of the electric field gradient.

SELECTION OF CITATIONS
SEARCH DETAIL
...