Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38793512

ABSTRACT

The heat treatment of aluminum alloys is very important in industries where low weight in combination with high wear resistance, good strength, and hardness are important. However, depending on their chemical composition, aluminum alloys are subjected to different mechanical and thermal treatments to achieve the most favorable properties. In this study, an Al-Zn-Mg alloy was heat-treated including solution annealing at 490 °C for 1 h with subsequent artificial aging at 130, 160, and 190 °C for 1, 5, and 9 h. The hardness (HV1) and abrasive wear resistance with three different abrasive grain sizes were measured for all samples. The highest hardness was measured for the samples artificially aged at 130 °C/5 h, 227 HV1, while the lowest hardness was measured for the samples aged at 190 °C/9 h. The highest and the lowest wear resistance was also observed for the same state, i.e., artificially aged at 130 °C/5 h and 190 °C/9 h, respectively. The critical abrasive grain size was detected for some samples, where a decrease in wear rate was observed with an increase in the abrasive grain size from the medium value to the largest. The Response Surface Methodology (RSM) was applied to demonstrate the influence of the input parameters on the material wear rate.

2.
Materials (Basel) ; 16(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36614771

ABSTRACT

Subfossil wood is a valuable and rare material often used for production of expensive furniture and decorative artistic items of unique beauty. Its mechanical and tribological properties are still being studied and are considered specific due to the particular conditions of its long-lasting formation in aqueous sediment sludge. Various elements that have been impregnated into the wood tissue over many years make the machining and grinding of this type of wood rather difficult compared to normal recent wood. The main objective of this study was to determine the influence of the abrasive grain size of sandpaper on the abrasion volume loss of recent and two subfossil oak samples in three characteristic sections (cross, radial, and tangential). The results showed that the average size of abrasive grains and the orientation of the wood structure have an influence on the abrasion volume loss of all three samples. The phenomenon of the critical size of abrasive grains was observed in all samples and on all sections. As the size of abrasive grains increased to the critical size, the abrasive volume loss of the sample increased simultaneously. The lowest abrasion volume loss was observed on recent oak. In all samples, the lowest volume loss was measured on the cross sections, and the tangential and radial sections had mutually equal values. It was also found that the increase in the size of abrasive grains to a critical value resulted in the increasing value of the absolute difference between the abrasion volume loss of the cross, radial, and tangential section samples, while the relative relations between the abrasive volume loss values of three different sections (C/R, C/T, R/T) within the same grit of sandpaper remained quite similar.

SELECTION OF CITATIONS
SEARCH DETAIL
...