Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928385

ABSTRACT

Emotional stress is one of the health risk factors in the modern human lifestyle. Stress exposure can provoke the manifestation of various pathological conditions, one of which is a sharp increase in the blood pressure level. In the present study, we analyzed changes in the transcriptome profiles of the hypothalamus of hypertensive ISIAH and normotensive WAG rats exposed to a single short-term restraint stress (the rat was placed in a tight wire-mesh cage for 2 h). This type of stress can be considered emotional stress. The functional annotation of differentially expressed genes allowed us to identify the most significantly altered biological processes in the hypothalamus of hypertensive and normotensive rats. The study made it possible to identify a group of genes that describe a general response to stress, independent of the rat genotype, as well as a hypothalamic response to stress specific to each strain. The alternatively changing expression of the Npas4 (neuronal PAS domain protein 4) gene, which is downregulated in the hypothalamus of the control WAG rats and induced in the hypothalamus of hypertensive ISIAH rats, is suggested to be the key event for understanding inter-strain differences in the hypothalamic response to stress. The stress-dependent ISIAH strain-specific induction of Fos and Jun gene transcription may play a crucial role in neuronal activation in this rat strain. The data obtained can be potentially useful in the selection of molecular targets for the development of pharmacological approaches to the correction of stress-induced pathologies related to neuronal excitability, taking into account the hypertensive status of the patients.


Subject(s)
Hypertension , Hypothalamus , Rats, Wistar , Stress, Psychological , Transcriptome , Animals , Hypertension/genetics , Hypertension/metabolism , Hypertension/etiology , Hypothalamus/metabolism , Rats , Stress, Psychological/genetics , Male , Restraint, Physical , Gene Expression Profiling , Blood Pressure , Gene Expression Regulation , Disease Models, Animal , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism
2.
Biomedicines ; 11(7)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37509453

ABSTRACT

Research into genetic and physiological mechanisms of widespread disorders such as arterial hypertension as well as neuropsychiatric and other human diseases is urgently needed in academic and practical medicine and in the field of biology. Nevertheless, such studies have many limitations and pose difficulties that can be overcome by using animal models. To date, for the purposes of creating animal models of human pathologies, several approaches have been used: pharmacological/chemical intervention; surgical procedures; genetic technologies for creating transgenic animals, knockouts, or knockdowns; and breeding. Although some of these approaches are good for certain research aims, they have many drawbacks, the greatest being a strong perturbation (in a biological system) that, along with the expected effect, exerts side effects in the study. Therefore, for investigating the pathogenesis of a disease, models obtained using genetic selection for a target trait are of high value as this approach allows for the creation of a model with a "natural" manifestation of the pathology. In this review, three rat models are described: ISIAH rats (arterial hypertension), GC rats (catatonia), and PM rats (audiogenic epilepsy), which are developed by breeding in the Laboratory of Evolutionary Genetics at the Institute of Cytology and Genetics (the Siberian Branch of the Russian Academy of Sciences).

3.
Int J Mol Sci ; 24(13)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37446162

ABSTRACT

Hypertension is one of the most significant risk factors for many cardiovascular diseases. At different stages of hypertension development, various pathophysiological processes can play a key role in the manifestation of the hypertensive phenotype and of comorbid conditions. Accordingly, it is thought that when diagnosing and choosing a strategy for treating hypertension, it is necessary to take into account age, the stage of disorder development, comorbidities, and effects of emotional-psychosocial factors. Nonetheless, such an approach to choosing a treatment strategy is hampered by incomplete knowledge about details of age-related associations between the numerous features that may contribute to the manifestation of the hypertensive phenotype. Here, we used two groups of male F2(ISIAHxWAG) hybrids of different ages, obtained by crossing hypertensive ISIAH rats (simulating stress-sensitive arterial hypertension) and normotensive WAG rats. By principal component analysis, the relationships among 21 morphological, physiological, and behavioral traits were examined. It was shown that the development of stress-sensitive hypertension in ISIAH rats is accompanied not only by an age-dependent (FDR < 5%) persistent increase in basal blood pressure but also by a decrease in the response to stress and by an increase in anxiety. The plasma corticosterone concentration at rest and its increase during short-term restraint stress in a group of young rats did not have a straightforward relationship with the other analyzed traits. Nonetheless, in older animals, such associations were found. Thus, the study revealed age-dependent relationships between the key features that determine hypertension manifestation in ISIAH rats. Our results may be useful for designing therapeutic strategies against stress-sensitive hypertension, taking into account the patients' age.


Subject(s)
Hypertension , Rats , Male , Animals , Blood Pressure/physiology , Corticosterone , Phenotype
4.
Int J Mol Sci ; 24(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36769363

ABSTRACT

The hippocampus is known as the brain region implicated in visuospatial processes and processes associated with learning and short- and long-term memory. An important functional characteristic of the hippocampus is lifelong neurogenesis. A decrease or increase in adult hippocampal neurogenesis is associated with a wide range of neurological diseases. We have previously shown that in adult male mice with a chronic positive fighting experience in daily agonistic interactions, there is an increase in the proliferation of progenitor neurons and the production of young neurons in the dentate gyrus (in hippocampus), and these neurogenesis parameters remain modified during 2 weeks of deprivation of further fights. The aim of the present work was to identify hippocampal genes associated with neurogenesis and involved in the formation of behavioral features in mice with the chronic experience of wins in aggressive confrontations, as well as during the subsequent 2-week deprivation of agonistic interactions. Hippocampal gene expression profiles were compared among three groups of adult male mice: chronically winning for 20 days in the agonistic interactions, chronically victorious for 20 days followed by the 2-week deprivation of fights, and intact (control) mice. Neurogenesis-associated genes were identified whose transcription levels changed during the social confrontations and in the subsequent period of deprivation of fights. In the experimental males, some of these genes are associated with behavioral traits, including abnormal aggression-related behavior, an abnormal anxiety-related response, and others. Two genes encoding transcription factors (Nr1d1 and Fmr1) were likely to contribute the most to the between-group differences. It can be concluded that the chronic experience of wins in agonistic interactions alters hippocampal levels of transcription of multiple genes in adult male mice. The transcriptome changes get reversed only partially after the 2-week period of deprivation of fights. The identified differentially expressed genes associated with neurogenesis and involved in the control of a behavior/neurological phenotype can be used in further studies to identify targets for therapeutic correction of the neurological disturbances that develop in winners under the conditions of chronic social confrontations.


Subject(s)
Hippocampus , Learning , Mice , Animals , Male , Hippocampus/metabolism , Brain/metabolism , Neurons/metabolism , Neurogenesis/genetics , Fragile X Mental Retardation Protein/metabolism
5.
Biochemistry (Mosc) ; 87(9): 1050-1064, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36180995

ABSTRACT

Chronic social stress caused by daily agonistic interactions in male mice leads to a mixed anxiety/depression-like disorder that is accompanied by the development of psychogenic immunodeficiency and stimulation of oncogenic processes concurrently with many neurotranscriptomic changes in brain regions. The aim of the study was to identify carcinogenesis- and apoptosis-associated differentially expressed genes (DEGs) in the hypothalamus of male mice with depression-like symptoms and, for comparison, in aggressive male mice with positive social experience. To obtain two groups of animals with the opposite 20-day social experiences, a model of chronic social conflict was used. Analysis of RNA-Seq data revealed similar expression changes for many DEGs between the aggressive and depressed animals in comparison with the control group; however, the number of DEGs was significantly lower in the aggressive than in the depressed mice. It is likely that the observed unidirectional changes in the expression of carcinogenesis- and apoptosis-associated genes in the two experimental groups may be a result of prolonged social stress (of different severity) caused by the agonistic interactions. In addition, 26 DEGs were found that did not change expression in the aggressive animals and could be considered genes promoting carcinogenesis or inhibiting apoptosis. Akt1, Bag6, Foxp4, Mapk3, Mapk8, Nol3, Pdcd10, and Xiap were identified as genes whose expression most strongly correlated with the expression of other DEGs, suggesting that their protein products play a role in coordination of the neurotranscriptomic changes in the hypothalamus. Further research into functions of these genes may be useful for the development of pharmacotherapies for psychosomatic pathologies.


Subject(s)
Hypothalamus , Social Defeat , Animals , Apoptosis , Carcinogenesis/metabolism , Hypothalamus/metabolism , Male , Mice , Mice, Inbred C57BL , Molecular Chaperones/metabolism , Nuclear Proteins/metabolism , Stress, Psychological/metabolism
6.
Genes (Basel) ; 13(10)2022 10 11.
Article in English | MEDLINE | ID: mdl-36292716

ABSTRACT

Advancements in RNA sequencing technology in past decade have underlined its power for elucidating the brain gene networks responsible for various stressful factors, as well as the pathologies associated with both genetically determined neurodegenerative diseases and those acquired during the lifespan [...].


Subject(s)
Neurodegenerative Diseases , Transcriptome , Humans , Transcriptome/genetics , Sequence Analysis, RNA , Brain/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology
7.
Genes (Basel) ; 13(9)2022 09 07.
Article in English | MEDLINE | ID: mdl-36140769

ABSTRACT

Long noncoding RNAs (lncRNAs) play an important role in the control of many physiological and pathophysiological processes, including the development of hypertension and other cardiovascular diseases. Nonetheless, the understanding of the regulatory function of many lncRNAs is still incomplete. This work is a continuation of our earlier study on the sequencing of hypothalamic transcriptomes of hypertensive ISIAH rats and control normotensive WAG rats. It aims to identify lncRNAs that may be involved in the formation of the hypertensive state and the associated behavioral features of ISIAH rats. Interstrain differences in the expression of seven lncRNAs were validated by quantitative PCR. Differential hypothalamic expression of lncRNAs LOC100910237 and RGD1562890 between hypertensive and normotensive rats was shown for the first time. Expression of four lncRNAs (Snhg4, LOC100910237, RGD1562890, and Tnxa-ps1) correlated with transcription levels of many hypothalamic genes differentially expressed between ISIAH and WAG rats (DEGs), including genes associated with the behavior/neurological phenotype and hypertension. After functional annotation of these DEGs, it was concluded that lncRNAs Snhg4, LOC100910237, RGD1562890, and Tnxa-ps1 may be involved in the hypothalamic processes related to immune-system functioning and in the response to various exogenous and endogenous factors, including hormonal stimuli. Based on the functional enrichment analysis of the networks, an association of lncRNAs LOC100910237 and Tnxa-ps1 with retinol metabolism and an association of lncRNAs RGD1562890 and Tnxa-ps1 with type 1 diabetes mellitus are proposed for the first time. Based on a discussion, it is hypothesized that previously functionally uncharacterized lncRNA LOC100910237 is implicated in the regulation of hypothalamic processes associated with dopaminergic synaptic signaling, which may contribute to the formation of the behavioral/neurological phenotype and hypertensive state of ISIAH rats.


Subject(s)
Hypertension , RNA, Long Noncoding , Animals , Hypertension/genetics , Phenotype , RNA, Long Noncoding/genetics , Rats , Stress, Physiological/genetics , Vitamin A
8.
Genes (Basel) ; 12(11)2021 11 18.
Article in English | MEDLINE | ID: mdl-34828419

ABSTRACT

Midbrain raphe nuclei (MRNs) contain a large number of serotonergic neurons associated with the regulation of numerous types of psychoemotional states and physiological processes. The aim of this work was to study alterations of the MRN transcriptome in mice with prolonged positive or negative fighting experience and to identify key gene networks associated with the regulation of serotonergic system functioning. Numerous genes underwent alterations of transcription in the MRNs of male mice that either manifested aggression or experienced social defeat in daily agonistic interactions. The expression of the Tph2 gene encoding the rate-limiting enzyme of the serotonin synthesis pathway correlated with the expression of many genes, 31 of which were common between aggressive and defeated mice and were downregulated in the MRNs of mice of both experimental groups. Among these common differentially expressed genes (DEGs), there were genes associated with behavior, learning, memory, and synaptic signaling. These results suggested that, in the MRNs of the mice, the transcriptome changes associated with serotonergic regulation of various processes are similar between the two groups (aggressive and defeated). In the MRNs, more DEGs correlating with Tph2 expression were found in defeated mice than in the winners, which is probably a consequence of deeper Tph2 downregulation in the losers. It was shown for the first time that, in both groups of experimental mice, the changes in the transcription of genes controlling the synthesis and transport of serotonin directly correlate with the expression of genes Crh and Trh, which control the synthesis of corticotrophin- and thyrotropin-releasing hormones. Our findings indicate that CRH and TRH locally produced in MRNs are related to serotonergic regulation of brain processes during a chronic social conflict.


Subject(s)
Aggression , Corticotropin-Releasing Hormone/metabolism , Raphe Nuclei/metabolism , Serotonin/biosynthesis , Social Defeat , Thyrotropin-Releasing Hormone/metabolism , Animals , Corticotropin-Releasing Hormone/genetics , Male , Mice , Mice, Inbred C57BL , Serotonin/genetics , Thyrotropin-Releasing Hormone/genetics , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism
9.
Genes (Basel) ; 12(7)2021 07 20.
Article in English | MEDLINE | ID: mdl-34356115

ABSTRACT

A range of several psychiatric medications targeting the activity of solute carrier (SLC) transporters have proved effective for treatment. Therefore, further research is needed to elucidate the expression profiles of the Slc genes, which may serve as markers of altered brain metabolic processes and neurotransmitter activities in psychoneurological disorders. We studied the Slc differentially expressed genes (DEGs) using transcriptomic profiles in the ventral tegmental area (VTA), nucleus accumbens (NAcc), and prefrontal cortex (PFC) of control and aggressive male mice with psychosis-like behavior induced by repeated experience of aggression accompanied with wins in daily agonistic interactions. The majority of the Slc DEGs were shown to have brain region-specific expression profiles. Most of these genes in the VTA and NAcc (12 of 17 and 25 of 26, respectively) were downregulated, which was not the case in the PFC (6 and 5, up- and downregulated, respectively). In the VTA and NAcc, altered expression was observed for the genes encoding the transporters of neurotransmitters as well as inorganic and organic ions, amino acids, metals, glucose, etc. This indicates an alteration in transport functions for many substrates, which can lead to the downregulation or even disruption of cellular and neurotransmitter processes in the VTA and NAcc, which are attributable to chronic stimulation of the reward systems induced by positive fighting experience. There is not a single Slc DEG common to all three brain regions. Our findings show that in male mice with repeated experience of aggression, altered activity of neurotransmitter systems leads to a restructuring of metabolic and neurotransmitter processes in a way specific for each brain region. We assume that the scoring of Slc DEGs by the largest instances of significant expression co-variation with other genes may outline a candidate for new prognostic drug targets. Thus, we propose that the Slc genes set may be treated as a sensitive genes marker scaffold in brain RNA-Seq studies.


Subject(s)
Aggression/physiology , Solute Carrier Proteins/genetics , Transcriptome/genetics , Animals , Brain/metabolism , Dopamine/metabolism , Gene Expression/genetics , Gene Expression Profiling/methods , Male , Mice , Mice, Inbred C57BL , Neurotransmitter Agents/metabolism , Nucleus Accumbens/metabolism , Nucleus Accumbens/physiology , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiology , Solute Carrier Proteins/metabolism , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/physiology
10.
J Pers Med ; 11(2)2021 Jan 23.
Article in English | MEDLINE | ID: mdl-33498741

ABSTRACT

The relationship between activation of the sympathetic nervous system and cardiac hypertrophy has long been known. However, the molecular genetic basis of this association is poorly understood. Given the known role of hypothalamic norepinephrine in the activation of the sympathetic nervous system, the aim of the work was to carry out genetic mapping using Quantitative Trait Loci (QTL) analysis and determine the loci associated both with an increase in the concentration of norepinephrine in the hypothalamus and with an increase in heart mass in Inherited Stress-Induced Arterial Hypertension (ISIAH) rats simulating the stress-sensitive form of arterial hypertension. The work describes a genetic locus on chromosome 18, in which there are genes that control the development of cardiac hypertrophy associated with an increase in the concentration of norepinephrine in the hypothalamus, i.e., genes involved in enhanced sympathetic myocardial stimulation. No association of this locus with the blood pressure was found. Taking into consideration previously obtained results, it was concluded that the contribution to the development of heart hypertrophy in the ISIAH rats is controlled by different genetic loci, one of which is associated with the concentration of norepinephrine in the hypothalamus (on chromosome 18) and the other is associated with high blood pressure (on chromosome 1). Nucleotide substitutions that may be involved in the formation or absence of association with blood pressure in different rat strains are discussed.

11.
Int J Mol Sci ; 21(10)2020 May 17.
Article in English | MEDLINE | ID: mdl-32429546

ABSTRACT

Aging is a major risk factor of numerous human diseases. Adverse genetic variants may contribute to multiple manifestations of aging and increase the number of comorbid conditions. There is evidence of links between hypertension and age-related diseases, although the genetic relationships are insufficiently studied. Here, we investigated the contribution of hypertension to the development of accelerated-senescence syndrome in OXYS rats. We compared transcriptome sequences of the prefrontal cortex, hippocampus, and retina of OXYS rats with the genotypes of 45 rat strains and substrains (which include models with hypertension) to find single-nucleotide polymorphisms (SNPs) both associated with hypertension and possibly contributing to the development of age-related diseases. A total of 725 polymorphisms were common between OXYS rats and one or more hypertensive rat strains/substrains being analyzed. Multidimensional scaling detected significant similarities between OXYS and ISIAH rat genotypes and significant differences between these strains and the other hypertensive rat strains/substrains. Nonetheless, similar sets of SNPs produce a different phenotype in OXYS and ISIAH rats depending on hypertension severity. We identified 13 SNPs causing nonsynonymous amino-acid substitutions having a deleterious effect on the structure or function of the corresponding proteins and four SNPs leading to functionally significant structural rearrangements of transcripts in OXYS rats. Among them, SNPs in genes Ephx1, Pla2r1, and Ccdc28b were identified as candidates responsible for the concomitant manifestation of hypertension and signs of accelerated aging in OXYS rats.


Subject(s)
Aging/genetics , Cellular Senescence/genetics , Hypertension/genetics , Transcriptome/genetics , Aging/metabolism , Alleles , Animals , Chromosomes/genetics , Cytoskeletal Proteins/genetics , Disease Models, Animal , Epoxide Hydrolases/genetics , Genetic Association Studies , Genotype , Hippocampus/metabolism , Hypertension/metabolism , Hypertension/physiopathology , Male , Polymorphism, Single Nucleotide , Prefrontal Cortex/metabolism , RNA-Seq , Rats , Rats, Wistar , Receptors, Phospholipase A2/genetics , Retina/metabolism , Transcriptome/physiology
12.
J Alzheimers Dis ; 73(3): 1167-1183, 2020.
Article in English | MEDLINE | ID: mdl-31929160

ABSTRACT

Alzheimer's disease (AD) and age-related macular degeneration (AMD) are two complex incurable neurodegenerative disorders the common pathogenesis of which is actively discussed. There are overlapping risk factors and molecular mechanisms of the two diseases; at the same time, there are arguments in favor of the notion that susceptibility to each of these diseases is associated with a distinct genetic background. Here we identified single-nucleotide polymorphisms (SNPs) that are specific for senescence-accelerated OXYS rats, which simulate key characteristics of both sporadic AD and AMD. Transcriptomes of the hippocampus, prefrontal cortex, and retina (data of RNA-Seq) were analyzed. We detected SNPs in genes Rims2, AABR07072639.2, Lemd2, and AABR07045405.1, which thus can express significantly truncated proteins lacking functionally important domains. Additionally, 33 mutations in genes-which are related to various metabolic and signaling pathways-cause nonsynonymous amino acid substitutions presumably leading to disturbances in protein structure or functions. Some of the genes carrying these SNPs are associated with aging, neurodegenerative, and mental diseases. Thus, we revealed the SNPs can lead to abnormalities in protein structure or functions and affect the development of the senescence-accelerated phenotype of OXYS rats. Our data are consistent with the latest results of genome-wide association studies that highlight the importance of multiple pathways for the pathogenesis of AD and AMD. Identified SNPs can serve as promising research objects for further studies on the molecular mechanisms underlying this particular rat model as well as for the prediction of potential biomarkers of AD and AMD.


Subject(s)
Aging/genetics , Alzheimer Disease/genetics , Macular Degeneration/genetics , Polymorphism, Single Nucleotide , Transcriptome , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Hippocampus/metabolism , Hippocampus/pathology , Macular Degeneration/metabolism , Macular Degeneration/pathology , Phenotype , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Rats , Rats, Wistar , Retina/metabolism , Retina/pathology
13.
BMC Genomics ; 20(Suppl 3): 297, 2019 May 08.
Article in English | MEDLINE | ID: mdl-32039698

ABSTRACT

BACKGROUND: The development of essential hypertension is associated with a wide range of mechanisms. The brain stem neurons are essential for the homeostatic regulation of arterial pressure as they control baroreflex and sympathetic nerve activity. The ISIAH (Inherited Stress Induced Arterial Hypertension) rats reproduce the human stress-sensitive hypertensive disease with predominant activation of the neuroendocrine hypothalamic-pituitary-adrenal and sympathetic adrenal axes. RNA-Seq analysis of the brain stems from the hypertensive ISIAH and normotensive control WAG (Wistar Albino Glaxo) rats was performed to identify the differentially expressed genes (DEGs) and the main central mechanisms (biological processes and metabolic pathways) contributing to the hypertensive state in the ISIAH rats. RESULTS: The study revealed 224 DEGs. Their annotation in databases showed that 22 of them were associated with hypertension and blood pressure (BP) regulation, and 61 DEGs were associated with central nervous system diseases. In accordance with the functional annotation of DEGs, the key role of hormonal metabolic processes and, in particular, the enhanced biosynthesis of aldosterone in the brain stem of ISIAH rats was proposed. Multiple DEGs associated with several Gene Ontology (GO) terms essentially related to modulation of BP were identified. Abundant groups of DEGs were related to GO terms associated with responses to different stimuli including response to organic (hormonal) substance, to external stimulus, and to stress. Several DEGs making the most contribution to the inter-strain differences were detected including the Ephx2, which was earlier defined as a major candidate gene in the studies of transcriptional profiles in different tissues/organs (hypothalamus, adrenal gland and kidney) of ISIAH rats. CONCLUSIONS: The results of the study showed that inter-strain differences in ISIAH and WAG brain stem functioning might be a result of the imbalance in processes leading to the pathology development and those, exerting the compensatory effects. The data obtained in this study are useful for a better understanding of the genetic mechanisms underlying the complexity of the brain stem processes in ISIAH rats, which are a model of stress-sensitive form of hypertension.


Subject(s)
Blood Pressure/genetics , Brain Stem/metabolism , Gene Expression Profiling , Hypertension/genetics , Hypertension/physiopathology , Animals , Molecular Sequence Annotation , Rats , Species Specificity , Stress, Physiological/genetics , Transcription Factors/genetics
14.
Curr Hypertens Rep ; 20(8): 66, 2018 06 16.
Article in English | MEDLINE | ID: mdl-29909475

ABSTRACT

PURPOSE OF REVIEW: Acute psychoemotional stress is one of the causes of a sharp increase in blood pressure. However, the question if the stress may promote the hypertensive disease development is still open. This review aims, firstly, to show that the genetically determined enhanced responsiveness to stress is linked to sustained hypertension development and, secondly, to characterize the main physiological mechanisms and genetic factors implicated in the pathogenesis of stress-sensitive hypertension. RECENT FINDINGS: Recent findings helped to characterize the main neuroendocrine mechanisms and the specificity of the genetic background contributing to the stress-sensitive hypertension development in the ISIAH rats. The ISIAH rat strain, which is an original model of the stress-sensitive arterial hypertension, can be considered as "living" proof that the genetic predisposition to increased stress-reactivity can lead to the development of persistent stress-dependent arterial hypertension. The ISIAH rat strain is characterized by the genetically determined enhanced response of the neuroendocrine and renal regulatory systems to stress and is a suitable model that allows one to explore the genetic and physiological mechanisms involved in stress-sensitive hypertension development. There are common genetic loci (QTLs) associated with both basal and stress-induced blood pressure (BP) levels as well as QTLs associated with BP and other traits, which may be related to hypertension development in ISIAH rats. Multiple genes differentially expressed in the target organs/tissues of hypertensive ISIAH and normotensive control rats are associated with many biological processes and metabolic pathways involved in stress response and arterial hypertension. The genotype of ISIAH rats is characterized by numerous specific and common SNPs as compared with other models of hypertensive rats. The results of the studies are valuable for the search for genetic markers specific for stress-induced arterial hypertension, as well as for the selection of new molecular targets that may be potentially useful for prevention and/or therapy of hypertensive disease.


Subject(s)
Blood Pressure , Hypertension , Stress, Psychological , Animals , Blood Pressure/genetics , Blood Pressure/physiology , Disease Models, Animal , Genetic Predisposition to Disease , Hypertension/genetics , Hypertension/psychology , Rats , Stress, Psychological/genetics , Stress, Psychological/physiopathology
15.
Clin Exp Hypertens ; 38(5): 415-23, 2016.
Article in English | MEDLINE | ID: mdl-27362777

ABSTRACT

OBJECTIVE: Association between stress and hypertensive disease is still a matter of debate. Can stress be the cause of hypertensive disease and, if so, what mechanisms are involved? To clarify this question, the Inherited stress-induced arterial hypertensive rat strain (ISIAH rat strain) with a stress related arterial hypertension was developed by selection for the enhanced blood pressure response to 0.5 h restraint stress. The main intention of this work is to confirm that the adrenals are a main link between stress and hypertensive disease. METHODS: Hypertensive ISIAH and normotensive WAG rats have been studied. The in vivo secretion rate of corticosterone, aldosterone, 11-Deoxycorticosterone (DOC), and 11-dehydrocorticosterone was measured in anesthetized rats by adrenal vein cannulation. The Dexamethasone/Adrenocorticotropic hormone (DEX/ACTH) test was performed and mRNA expression of Cyp11b1 and Cyp11b2 genes in adrenals was evaluated by real-time PCR. RESULTS: An increased secretion rate of corticosterone and DOC and higher peripheral plasma aldosterone concentration in ISIAH rats were revealed. Response of plasma aldosterone to the surgical stress (adrenal vein cannulation) in the ISIAH rats was significantly higher. The increase of corticosterone and aldosterone in response to ACTH was also higher in hypertensive rats. The basal mRNA expression of both Cyp11b1 and Cyp11b2 genes was increased in the ISIAH rats. The ratio 11-dehydrocorticosterone/corticosterone in ISIAH rats was low which indicates the weakening of 11-beta-Hydroxysteroid dehydrogenase (11-beta-HSD) type 2 converting corticosterone to cortisone. CONCLUSION: ISIAH rats may serve as a living proof that stress may produce sustained hypertension, and genetically determined enhanced stress responsiveness of corticosterone and, especially, aldosterone may play a crucial role in the mechanism of hypertension development.


Subject(s)
Adrenal Glands/metabolism , Hypertension/psychology , Stress, Psychological/physiopathology , Adrenal Glands/blood supply , Aldosterone/metabolism , Animals , Arteries/physiopathology , Blood Pressure/physiology , Catheterization , Corticosterone/analogs & derivatives , Corticosterone/metabolism , Cortisone/metabolism , Hypertension/physiopathology , Male , Rats, Inbred SHR , Real-Time Polymerase Chain Reaction , Veins/surgery
16.
BMC Genet ; 17 Suppl 1: 12, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26821914

ABSTRACT

BACKGROUND: The renal function plays a leading role in long-term control of arterial pressure. The comparative analysis of renal cortex transcriptome in ISIAH rats with inherited stress-induced arterial hypertension and normotensive WAG rats was performed using RNA-Seq approach. The goal of the study was to identify the differentially expressed genes (DEGs) related to hypertension and to detect the pathways contributing to the differences in renal functions in ISIAH and WAG rats. RESULTS: The analysis revealed 716 genes differentially expressed in renal cortex of ISIAH and WAG rats, 42 of them were associated with arterial hypertension and regulation of blood pressure (BP). Several Gene Ontology (GO) terms significantly enriched with DEGs suggested the existence of the hormone dependent interstrain differences in renal cortex function. Multiple DEGs were associated with regulation of blood pressure and blood circulation, with the response to stress (including oxidative stress, hypoxia, and fluid shear stress) and its regulation. Several other processes which may contribute to hypertension development in ISIAH rats were: ion transport, regulation of calcium ion transport, homeostatic process, tissue remodeling, immune system process and regulation of immune response. KEGG analysis marked out several pathways significantly enriched with DEGs related to immune system function, to steroid hormone biosynthesis, tryptophan, glutathione, nitrogen, and drug metabolism. CONCLUSIONS: The results of the study provide a basis for identification of potential biomarkers of stress-sensitive hypertension and for further investigation of the mechanisms that affect renal cortex function and hypertension development.


Subject(s)
Gene Expression Profiling , Hypertension/genetics , Kidney Cortex/metabolism , Stress, Physiological/genetics , Animals , Gene Expression Regulation , Gene Ontology , Hypertension/metabolism , Immune System , Male , Rats , Rats, Wistar
17.
BMC Genet ; 17 Suppl 1: 13, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26822062

ABSTRACT

BACKGROUND: The hypothalamus has an important role in the onset and maintenance of hypertension and stress responses. Rats with inherited stress-induced arterial hypertension (ISIAH), reproducing the human stress-sensitive hypertensive state with predominant involvement of the neuroendocrine hypothalamic-pituitary-adrenal and sympathoadrenal axes, were used for analysis of the hypothalamus transcriptome. RESULTS: RNA-seq analysis revealed 139 genes differentially expressed in the hypothalami of hypertensive ISIAH and normotensive Wistar Albino Glaxo (WAG) rats. According to the annotation in databases, 18 of the differentially expressed genes (DEGs) were associated with arterial hypertension. The Gene Ontology (GO) functional annotation showed that these genes were related to different biological processes that may contribute to the hypertension development in the ISIAH rats. The most significantly affected processes were the following: regulation of hormone levels, immune system process, regulation of response to stimulus, blood circulation, response to stress, response to hormone stimulus, transport, metabolic processes, and endocrine system development. The most significantly affected metabolic pathways were those associated with the function of the immune system and cell adhesion molecules and the metabolism of retinol and arachidonic acid. Of the top 40 DEGs making the greatest contribution to the interstrain differences, there were 3 genes (Ephx2, Cst3 and Ltbp2) associated with hypertension that were considered to be suitable for further studies as potential targets for the stress-sensitive hypertension therapy. Seven DEGs were found to be common between hypothalamic transcriptomes of ISIAH rats and Schlager mice with established neurogenic hypertension. CONCLUSIONS: The results of this study revealed multiple DEGs and possible mechanisms specifying the hypothalamic function in the hypertensive ISIAH rats. These results provide a basis for further investigation of the signalling mechanisms that affect hypothalamic output related to stress-sensitive hypertension development.


Subject(s)
Gene Expression Profiling , Hypertension/genetics , Hypothalamus/metabolism , Stress, Physiological/genetics , Animals , Endocrine System , Gene Expression Regulation , Gene Ontology , Hormones , Hypertension/metabolism , Male , Mice , Rats , Rats, Wistar
18.
BMC Genomics ; 17(Suppl 14): 989, 2016 12 28.
Article in English | MEDLINE | ID: mdl-28105924

ABSTRACT

BACKGROUND: The adrenals are known as an important link in pathogenesis of arterial hypertensive disease. The study was directed to the adrenal transcriptome analysis in ISIAH rats with stress-sensitive arterial hypertension and predominant involvement in pathogenesis of the hypothalamic-pituitary-adrenal and sympathoadrenal systems. RESULTS: The RNA-Seq approach was used to perform the comparative adrenal transcriptome profiling in hypertensive ISIAH and normotensive WAG rats. Multiple differentially expressed genes (DEGs) related to different biological processes and metabolic pathways were detected. The discussion of the results helped to prioritize the several DEGs as the promising candidates for further studies of the genetic background underlying the stress-sensitive hypertension development in the ISIAH rats. Two of these were transcription factor genes (Nr4a3 and Ppard), which may be related to the predominant activation of the sympathetic-adrenal medullary axis in ISIAH rats. The other genes are known as associated with hypertension and were defined in the current study as DEGs making the most significant contribution to the inter-strain differences. Four of them (Avpr1a, Hsd11b2, Agt, Ephx2) may provoke the hypertension development, and Mpo may contribute to insulin resistance and inflammation in the ISIAH rats. CONCLUSIONS: The study strongly highlighted the complex nature of the pathogenesis of stress-sensitive hypertension. The data obtained may be useful for identifying the common molecular determinants in different animal models of arterial hypertension, which may be potentially used as therapeutic targets for pharmacological intervention.


Subject(s)
Adrenal Glands/metabolism , Hypertension/etiology , Hypertension/metabolism , Stress, Physiological , Adrenal Glands/physiopathology , Animals , Computational Biology/methods , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation , Gene Ontology , Hypertension/physiopathology , Male , Rats , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
19.
BMC Genet ; 17(Suppl 3): 151, 2016 12 22.
Article in English | MEDLINE | ID: mdl-28105926

ABSTRACT

BACKGROUND: The changes in the renal function leading to a reduction of medullary blood flow can have a great impact on sodium and water homeostasis and on the long-term control of arterial blood pressure. The RNA-Seq approach was used for transcriptome profiling of the renal medulla from hypertensive ISIAH and normotensive WAG rats to uncover the genetic basis of the changes underlying the renal medulla function in the ISIAH rats being a model of the stress-sensitive arterial hypertension and to reveal the genes which possibly may contribute to the alterations in medullary blood flow. RESULTS: Multiple DEGs specifying the function of renal medulla in ISIAH rats were revealed. The group of DEGs described by Gene Ontology term 'oxidation reduction' was the most significantly enriched one. The other groups of DEGs related to response to external stimulus, response to hormone (endogenous) stimulus, response to stress, and homeostatic process provide the molecular basis for integrated responses to homeostasis disturbances in the renal medulla of the ISIAH rats. Several DEGs, which may modulate the renal medulla blood flow, were detected. The reduced transcription of Nos3 pointed to the possible reduction of the blood flow in the renal medulla of ISIAH rats. CONCLUSIONS: The generated data may be useful for comparison with those from different models of hypertension and for identifying the common molecular determinants contributing to disease manifestation, which may be potentially used as new pharmacological targets.


Subject(s)
Hypertension/genetics , Kidney Medulla/metabolism , Transcriptome , Animals , Blood Pressure , Databases, Genetic , Discriminant Analysis , Disease Models, Animal , Hypertension/etiology , Hypertension/pathology , Kidney Diseases/genetics , Kidney Diseases/metabolism , Kidney Diseases/pathology , Male , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Principal Component Analysis , RNA/chemistry , RNA/isolation & purification , RNA/metabolism , Rats , Real-Time Polymerase Chain Reaction , Sequence Analysis, RNA , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
20.
BMC Genet ; 16 Suppl 1: S1, 2015.
Article in English | MEDLINE | ID: mdl-25707311

ABSTRACT

BACKGROUND: The kidney mass is significantly increased in hypertensive ISIAH rats with Inherited Stress Induced Arterial Hypertension as compared with normotensive WAG rats. The QTL/microarray approach was carried out to determine the positional candidate genes in the QTL for absolute and relative kidney weight. RESULTS: Several known and predicted genes differentially expressed in ISIAH and WAG kidney were mapped to genetic loci associated with the absolute and relative kidney weight in 6-month old F2 hybrid (ISIAHxWAG) males. The knowledge-driven filtering of the list of candidates helped to suggest several positional candidate genes, which may be related to the structural and mass changes in hypertensive ISIAH kidney. CONCLUSIONS: The further experimental validation of causative genes and detection of polymorphisms will provide opportunities to advance our understanding of the underlying nature of structural and mass changes in hypertensive ISIAH kidney.


Subject(s)
Hypertension/genetics , Kidney/pathology , Quantitative Trait Loci , Animals , Blood Pressure , Gene Expression Profiling , Male , Microsatellite Repeats , Oligonucleotide Array Sequence Analysis , Organ Size , Polymorphism, Genetic , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...