Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 11(8)2018 Aug 11.
Article in English | MEDLINE | ID: mdl-30103508

ABSTRACT

Atom Probe Tomography (APT), Transmission Electron Microscopy (TEM), and 3D mechanical calculations in complex geometry and anisotropic strain fields were employed to study the role of minor elements in the precipitation process of silicon and chromium nitrides in nitrided Fe⁻Si and Fe⁻Cr alloys, respectively. In nitrided Fe⁻Si alloys, an original sequence of Si3N4 precipitation was highlighted. Al⁻N clusters form first and act as nucleation sites for amorphous Si3N4 nitrides. This novel example of particle-simulated nucleation opens a new way to control Si3N4 precipitation in Fe⁻Si alloys. In nitrided Fe⁻Cr alloys, both the presence of iron in chromium nitrides and excess nitrogen in the ferritic matrix are unquestionably proved. Only a certain part of the so-called excess nitrogen is shown to be explained by the elastic accommodation of the misfit between nitride and the ferritic matrix. The presence of immobile excess nitrogen trapped at interfaces can be highly suspected.

2.
Inorg Chem ; 53(1): 147-59, 2014 Jan 06.
Article in English | MEDLINE | ID: mdl-24387745

ABSTRACT

The crystal structure of La10W2O21, which has to be reformulated (La5.667W0.333)LaWO14□2, is best described, on average, by a 2 × 2 × 2 anion-deficient fluorite-related superstructure cubic cell, with space group F4 3m, Z = 4, and a = 11.17932(6) Å, similar to Y7ReO14--δ. The 32 cations are distributed with lanthanum on the 4a-site, tungsten on the 4b-site, and a partial occupancy of the 24g-site by La (94%) and W. The 56 oxygen atoms occupy four 16e-sites, three of them fully and with an occupancy of 1/2 for the fourth one. Others M10W2O21 (M = Er, Y) adopt a 3 × 2 × 2 fluorite superstructure with W in octahedral sites, whereas W is mainly in tetrahedral sites in La10W2O21. Several powerful techniques such as crystal image furnace synthesis, (139)La nuclear magnetic resonance (NMR) and convergent beam electron diffraction (CBED) were used to achieve our results. Transmission electron microscopy (microdiffraction, CBED, and Tanaka patterns) brought us the real symmetry, showing that indeed classical cubic twinning along the 3-fold axis does take place. The surprising La/W mixed site is nicely confirmed by (139)La NMR. This compound exhibits interesting fast oxide ion conducting properties, comparable with LAMOX (Lacorre et al. Nature 2000, 404, 856-858) at low temperature. As opposed to many ionic conductors, no temperature structural transition is observed. Its conductivity is about 6.4 × 10(-4) S·cm(-1) at 700 °C.

SELECTION OF CITATIONS
SEARCH DETAIL
...