Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36433448

ABSTRACT

Internet of Things and wireless sensor network applications are becoming more and more popular these days, supported by new communication technologies and protocols tailored to their specific requirements. This paper focuses on improving the performance of a Wireless Sensor Network operated by the MQTT-SN protocol, one of the most popular publish/subscribe protocols for IoT applications. In particular, we propose a dynamic Quality of Service (QoS) controller for the MQTT-SN protocol, capable of evaluating the status of the underlying network in terms of end-to-end delay and packet error rate, reacting consequently by assigning the best QoS value to a node. We design and implement the QoS controller in a simulated environment based on the ns-3 network emulator, and we perform extensive experiments to prove its effectiveness compared to a non-controlled scenario. The reported results show that, by controlling the quality of service, it is possible to effectively manage the number of packets successfully received by each device and their average latency, to improve the quality of the communication of each end node.


Subject(s)
Computer Communication Networks , Wireless Technology , Algorithms , Quality Control
2.
Sensors (Basel) ; 21(24)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34960367

ABSTRACT

Future university campuses will be characterized by a series of novel services enabled by the vision of Internet of Things, such as smart parking and smart libraries. In this paper, we propose a complete solution for a smart waste management system with the purpose of increasing the recycling rate in the campus and provide better management of the entire waste cycle. The system is based on a prototype of a smart waste bin, able to accurately classify pieces of trash typically produced in the campus premises with a hybrid sensor/image classification algorithm, as well as automatically segregate the different waste materials. We discuss the entire design of the system prototype, from the analysis of requirements to the implementation details and we evaluate its performance in different scenarios. Finally, we discuss advanced application functionalities built around the smart waste bin, such as optimized maintenance scheduling.


Subject(s)
Universities , Waste Management , Algorithms , Humans , Recycling
3.
IEEE Trans Image Process ; 24(11): 3546-60, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26080384

ABSTRACT

Binary local features represent an effective alternative to real-valued descriptors, leading to comparable results for many visual analysis tasks while being characterized by significantly lower computational complexity and memory requirements. When dealing with large collections, a more compact representation based on global features is often preferred, which can be obtained from local features by means of, e.g., the bag-of-visual word model. Several applications, including, for example, visual sensor networks and mobile augmented reality, require visual features to be transmitted over a bandwidth-limited network, thus calling for coding techniques that aim at reducing the required bit budget while attaining a target level of efficiency. In this paper, we investigate a coding scheme tailored to both local and global binary features, which aims at exploiting both spatial and temporal redundancy by means of intra- and inter-frame coding. In this respect, the proposed coding scheme can conveniently be adopted to support the analyze-then-compress (ATC) paradigm. That is, visual features are extracted from the acquired content, encoded at remote nodes, and finally transmitted to a central controller that performs the visual analysis. This is in contrast with the traditional approach, in which visual content is acquired at a node, compressed and then sent to a central unit for further processing, according to the compress-then-analyze (CTA) paradigm. In this paper, we experimentally compare the ATC and the CTA by means of rate-efficiency curves in the context of two different visual analysis tasks: 1) homography estimation and 2) content-based retrieval. Our results show that the novel ATC paradigm based on the proposed coding primitives can be competitive with the CTA, especially in bandwidth limited scenarios.

4.
IEEE Trans Image Process ; 23(5): 2262-76, 2014 May.
Article in English | MEDLINE | ID: mdl-24818244

ABSTRACT

Visual features are successfully exploited in several applications (e.g., visual search, object recognition and tracking, etc.) due to their ability to efficiently represent image content. Several visual analysis tasks require features to be transmitted over a bandwidth-limited network, thus calling for coding techniques to reduce the required bit budget, while attaining a target level of efficiency. In this paper, we propose, for the first time, a coding architecture designed for local features (e.g., SIFT, SURF) extracted from video sequences. To achieve high coding efficiency, we exploit both spatial and temporal redundancy by means of intraframe and interframe coding modes. In addition, we propose a coding mode decision based on rate-distortion optimization. The proposed coding scheme can be conveniently adopted to implement the analyze-then-compress (ATC) paradigm in the context of visual sensor networks. That is, sets of visual features are extracted from video frames, encoded at remote nodes, and finally transmitted to a central controller that performs visual analysis. This is in contrast to the traditional compress-then-analyze (CTA) paradigm, in which video sequences acquired at a node are compressed and then sent to a central unit for further processing. In this paper, we compare these coding paradigms using metrics that are routinely adopted to evaluate the suitability of visual features in the context of content-based retrieval, object recognition, and tracking. Experimental results demonstrate that, thanks to the significant coding gains achieved by the proposed coding scheme, ATC outperforms CTA with respect to all evaluation metrics.

SELECTION OF CITATIONS
SEARCH DETAIL
...