Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Rev Esp Anestesiol Reanim ; 69(9): 544-555, 2022 Nov.
Article in Spanish | MEDLINE | ID: mdl-36337377

ABSTRACT

Background: The severe acute respiratory syndrome-coronavirus 2 pandemic pressure on healthcare systems can exhaust ventilator resources, especially where resources are restricted. Our objective was a rapid preclinical evaluation of a newly developed turbine-based ventilator, named the ACUTE-19, for invasive ventilation. Methods: Validation consisted of (a) testing tidal volume delivery in 11 simulated models, with various resistances and compliances; (b) comparison with a commercial ventilator (VIVO-50) adapting the United Kingdom Medicines and Healthcare products Regulatory Agency-recommendations for rapidly manufactured ventilators; and (c) in vivo testing in a sheep before and after inducing acute respiratory distress syndrome by saline lavage. Results: Differences in tidal volume in the simulated models were marginally different (largest difference 33 ml [95% CI 31 to 36]; P < .001). Plateau pressure was not different (-0.3 cmH2O [95% CI -0.9 to 0.3]; P = .409), and positive end-expiratory pressure was marginally different (0.3 cmH2O [95% CI 0.2 to 0.3]; P < .001) between the ACUTE-19 and the commercial ventilator. Bland-Altman analyses showed good agreement (mean bias -0.29 [limits of agreement 0.82 to -1.42], and mean bias 0.56 [limits of agreement 1.94 to -0.81], at a plateau pressure of 15 and 30 cmH2O, respectively). The ACUTE-19 achieved optimal oxygenation and ventilation before and after acute respiratory distress syndrome induction. Conclusions: The ACUTE-19 performed accurately in simulated and animal models yielding a comparable performance with a VIVO-50 commercial device. The ACUTE-19 can provide the basis for the development of a future affordable commercial ventilator.

2.
Rev. esp. anestesiol. reanim ; 69(9): 544-555, Nov. 2022. ilus, tab, graf
Article in Spanish | IBECS | ID: ibc-211677

ABSTRACT

Antecedentes: La pandemia producida por el síndrome respiratorio agudo severo por coronavirus 2 puede agotar los recursos sanitarios, especialmente de respiradores, en situaciones de escasez de recursos sanitarios. Nuestro objetivo fue realizar una evaluación preclínica rápida de un prototipo de respirador de turbina para la ventilación invasiva denominado ACUTE-19. Métodos: La validación consistió en: a) evaluación de la administración de un volumen corriente en 11 modelos pulmonares simulados, con diversas resistencias y compliancias; b) comparación con un ventilador comercial (VIVO-50) adaptando las recomendaciones de la Agencia Reguladora de Medicamentos y Productos Sanitarios del Reino Unido para ventiladores de fabricación rápida, y c) realización de pruebas in vivo en una oveja antes y después de inducir el síndrome de distrés respiratorio agudo mediante lavado salino. Resultados: Las diferencias de volumen corriente en los modelos simulados fueron mínimamente diferentes (la mayor diferencia fue de 33ml [IC 95%: 31 a 36]; p<0,001). La presión de meseta no fue diferente (−0,3cmH2O [IC 95%: −0,9 a 0,3]; p=0,409), y la presión positiva al final de la espiración fue levemente diferente (0,3cmH2O [IC 95%: 0,2 a 0,3]; p<0,001) comparando el ACUTE-19 y el ventilador comercial. El análisis de Bland-Altman mostró una buena concordancia (sesgo medio −0,29 [límites de concordancia 0,82 a −1,42], y sesgo medio 0,56 [límites de concordancia 1,94 a −0,81], a una presión de meseta de 15 y 30cmH2O, respectivamente). El ACUTE-19 consiguió una oxigenación y ventilación óptimas antes y después de la inducción del síndrome de distrés respiratorio agudo en el modelo animal. Conclusiones: El ACUTE-19 se comportó con precisión en los modelos simulados y animales, con un rendimiento comparable al del dispositivo comercial VIVO-50. El ACUTE-19 puede servir de base para el desarrollo de un futuro ventilador comercial asequible.(AU)


Background: The severe acute respiratory syndrome-coronavirus 2 pandemic pressure on healthcare systems can exhaust ventilator resources, especially where resources are restricted. Our objective was a rapid preclinical evaluation of a newly developed turbine-based ventilator, named the ACUTE-19, for invasive ventilation. Methods: Validation consisted of (a) testing tidal volume delivery in 11 simulated models, with various resistances and compliances; (b) comparison with a commercial ventilator (VIVO-50) adapting the United Kingdom Medicines and Healthcare products Regulatory Agency-recommendations for rapidly manufactured ventilators; and (c) in vivo testing in a sheep before and after inducing acute respiratory distress syndrome by saline lavage. Results: Differences in tidal volume in the simulated models were marginally different (largest difference 33ml [95% CI 31 to 36]; P<.001). Plateau pressure was not different (−0.3cmH2O [95% CI −0.9 to 0.3]; P=.409), and positive end-expiratory pressure was marginally different (0.3cmH2O [95% CI 0.2 to 0.3]; P<.001) between the ACUTE-19 and the commercial ventilator. Bland-Altman analyses showed good agreement (mean bias −0.29 [limits of agreement 0.82 to −1.42], and mean bias 0.56 [limits of agreement 1.94 to −0.81], at a plateau pressure of 15 and 30cmH2O, respectively). The ACUTE-19 achieved optimal oxygenation and ventilation before and after acute respiratory distress syndrome induction. Conclusions: The ACUTE-19 performed accurately in simulated and animal models yielding a comparable performance with a VIVO-50 commercial device. The ACUTE-19 can provide the basis for the development of a future affordable commercial ventilator.(AU)


Subject(s)
Humans , Ventilators, Mechanical , Severe acute respiratory syndrome-related coronavirus , Pandemics , Coronavirus Infections/epidemiology , Respiratory Mechanics , Spain , Cardiopulmonary Resuscitation , Anesthesiology
3.
Rev Esp Anestesiol Reanim (Engl Ed) ; 69(9): 544-555, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36244956

ABSTRACT

BACKGROUND: The Severe Acute Respiratory Syndrome (SARS)-Coronavirus 2 (CoV-2) pandemic pressure on healthcare systems can exhaust ventilator resources, especially where resources are restricted. Our objective was a rapid preclinical evaluation of a newly developed turbine-based ventilator, named the ACUTE-19, for invasive ventilation. METHODS: Validation consisted of (a) testing tidal volume (VT) delivery in 11 simulated models, with various resistances and compliances; (b) comparison with a commercial ventilator (VIVO-50) adapting the United Kingdom Medicines and Healthcare products Regulatory Agency-recommendations for rapidly manufactured ventilators; and (c) in vivo testing in a sheep before and after inducing acute respiratory distress syndrome (ARDS) by saline lavage. RESULTS: Differences in VT in the simulated models were marginally different (largest difference 33ml [95%-confidence interval (CI) 31-36]; P<.001ml). Plateau pressure (Pplat) was not different (-0.3cmH2O [95%-CI -0.9 to 0.3]; P=.409), and positive end-expiratory pressure (PEEP) was marginally different (0.3 cmH2O [95%-CI 0.2 to 0.3]; P<.001) between the ACUTE-19 and the commercial ventilator. Bland-Altman analyses showed good agreement (mean bias, -0.29, [limits of agreement, 0.82 to -1.42], and mean bias 0.56 [limits of agreement, 1.94 to -0.81], at a Pplat of 15 and 30cmH2O, respectively). The ACUTE-19 achieved optimal oxygenation and ventilation before and after ARDS induction. CONCLUSIONS: The ACUTE-19 performed accurately in simulated and animal models yielding a comparable performance with a VIVO-50 commercial device. The acute 19 can provide the basis for the development of a future affordable commercial ventilator.


Subject(s)
COVID-19 , Noninvasive Ventilation , Respiratory Distress Syndrome , Sheep , Animals , COVID-19/therapy , Ventilators, Mechanical , Tidal Volume , Respiratory Distress Syndrome/therapy , SARS-CoV-2
4.
J Vet Pharmacol Ther ; 30(4): 288-94, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17610401

ABSTRACT

Propofol formulated in a mixed medium-chain and long-chain triglycerides emulsion has been recently introduced for clinical use as an alternative to the conventional long-chain triglycerides formulation. This prospective multicentric study evaluated the clinical effectiveness and the complications associated with the use of this new formulation of propofol in dogs. Forty-six Spanish veterinary clinics participated in this study. A total of 541 anaesthesias (118 ASA I, 290 ASA II, 101 ASA III and 32 ASA IV) performed for various diagnostic and therapeutic purposes were evaluated. The anaesthetic protocol was not controlled, with the exception that propofol had to be used at least for induction of anaesthesia. The induction dose of propofol and the incidence of anaesthetic complications throughout the procedure were recorded. A chi-square test compared the incidence of complications according to the maintenance agent used (propofol vs. inhalatory anaesthesia), anaesthetic risk (ASA classification) and the reason for the anaesthesia. The patients premedicated with alpha2 agonists needed lower doses (mean +/- SD, 2.9 +/- 1.3 mg/kg i.v.) than the animals premedicated with phenothiazines (3.9 +/- 1.4 mg/kg i.v.) or benzodiazepines (4.0 +/- 1.4 mg/kg i.v.). The most frequent complications were difficult endotracheal intubation (1.3%), postinduction apnoea (11.3%), cyanosis (0.6%), bradypnoea (2.6%), tachypnoea (2.8%), bradycardia (2%), tachycardia (2.6%), hypotension (0.2%), shock (0.2%), vomiting (4.6%), epileptiform seizures (2.8%), premature awakening (7.4%) and delayed recovery (0.9%). There were no cases of pain on injection or aspiration pneumonia. Three dogs died (0.55%), one during induction and two during recovery from anaesthesia. This study demonstrates that the new formulation of propofol is an useful and effective drug to induce general anaesthesia in dogs.


Subject(s)
Anesthesia, Intravenous/veterinary , Anesthetics, Intravenous/administration & dosage , Dogs/physiology , Pain, Postoperative/veterinary , Propofol/administration & dosage , Anesthetics, Intravenous/adverse effects , Anesthetics, Intravenous/blood , Anesthetics, Intravenous/chemistry , Animals , Chemistry, Pharmaceutical , Emulsions , Female , Injections, Intravenous/veterinary , Male , Pain, Postoperative/prevention & control , Postoperative Complications , Propofol/adverse effects , Propofol/blood , Propofol/chemistry , Prospective Studies , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...