Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Nano ; 8(6): 1761-1770, 2021 May 20.
Article in English | MEDLINE | ID: mdl-34221410

ABSTRACT

Because of the difficulty of measuring nanoplastics (NP), the use of NPs doped with trace metals has been proposed as a promising approach to detect NP in environmental media and biota. In the present study, the freshwater amphipod Gammarus pulex were exposed to palladium (Pd)-doped NP via natural sediment at six spiking concentrations (0, 0.3, 1, 3, 10 and 30 g plastic per kg of sediment dry weight) with the aim of assessing their uptake and chronic effects using 28 days standardized single species toxicity tests. NP concentrations were quantified based on Pd concentrations measured by ICP-MS on digests of the exposed organisms and faecal pellets excreted during a post-exposure 24 hour depuration period. Additionally, NP concentrations were measured in sediments and water to demonstrate accuracy of NP dosing and to quantify the resuspension of NP from the sediment caused by the organisms. A significant positive linear relationship between the uptake of NP by G. pulex and the concentration of NP in the sediments was observed, yet no statistically significant effects were found on the survival or growth of G. pulex. A biodynamic model fitted well to the data and suggested bioaccumulation would occur in two kinetic compartments, the major one being reversible with rapid depuration to clean medium. Model fitting yielded a mass based trophic transfer factor (TTF), conceptually similar to the traditional biota sediment accumulation factor, for NP in the gut of 0.031. This value is close to a TTF value of 0.025 that was obtained for much larger microplastic particles in a similar experiment performed previously. Mechanistically, this suggests that ingestion of plastic is limited by the total volume of ingested particles. We demonstrated that using metal-doped plastics provides opportunities for precise quantification of NP accumulation and exposure in fate and effect studies, which can be a clear benefit for NP risk assessment.

2.
Water Res ; 176: 115723, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32220661

ABSTRACT

Assessment methods on data quality and environmental variability are lacking for microplastics (MP). Here we assess occurrence and variability of MP number concentrations in two Dutch rivers. Strict QA/QC procedures were applied to identify MP using Fourier-transform infrared (FTIR) microscopy followed by state of the art automated image analysis. For a series of randomly selected, yet ever smaller subareas of filters, we assessed how accurately MP numbers and polymer types are represented during partial filter analysis. Levels of uncertainty were acceptable when analysing 50% of a filter during chemical mapping, and when identifying at least a subset of 50 individual particles with attenuated total reflection (ATR)-FTIR. Applying these guidelines, MP number concentrations between 67 and 11532 MP m-3 were detected in Dutch riverine surface waters. Spatial differences caused MP number concentrations to vary by two orders of magnitude. Temporal differences were lower and induced a maximum variation of one order of magnitude. In total, 26 polymer types were identified, the most common were polyethylene (23%), polypropylene (19.7%) and ethylene propylene diene monomer rubber (18.3%). The highest diversity of polymer types was found for small MPs, whereas MP larger than 1 mm was scarce and almost exclusively made of polyethylene or polypropylene. Virtually all sampling locations revealed MP number concentrations that are considerably below known effect thresholds for anticipated adverse ecological effects.


Subject(s)
Plastics , Water Pollutants, Chemical , Environmental Monitoring , Microplastics , Systems Analysis
3.
Sci Adv ; 6(5): eaay4054, 2020 01.
Article in English | MEDLINE | ID: mdl-32064347

ABSTRACT

Given the societal concern about the presence of nano- and microplastics in the environment, our nescience with respect to in situ effects is disturbing. Data on long-term implications under ecologically realistic conditions are particularly important for the risk assessment of nano- and microplastics. Here, we evaluate the long-term (up to 15 months) effects of five concentrations of nano- and microplastics on the natural recolonization of sediments by a macroinvertebrate community. Effects were assessed on the community composition, population sizes and species diversity. Nano- and microplastics adversely affected the abundance of macroinvertebrates after 15 months, which was caused by a reduction in the number of Naididae at the highest concentration (5% plastic per sediment dry weight). For some other taxa, smaller but still significant positive effects were found over time, altogether demonstrating that nano- and microplastics affected the community composition.


Subject(s)
Fresh Water , Invertebrates/growth & development , Microplastics/adverse effects , Models, Biological , Nanoparticles/administration & dosage , Animals
4.
Aquat Toxicol ; 210: 179-187, 2019 May.
Article in English | MEDLINE | ID: mdl-30870664

ABSTRACT

Nanoplastics are recognized as able to interact with other pollutants including heavy metals, and with natural organic matter, with implications for the potential risks to biota. We investigated the interaction of carboxylated polystyrene nanoparticles (PS-COOH NPs) with copper (Cu) and algal exudates (EPS) and how such interaction could affect Cu toxicity towards the freshwater microalga Raphidocelis subcapitata. PS-COOH NPs behavior in the presence of Cu and EPS was determined by dynamic light scattering (DLS), while PS-COOH NPs surface interaction with Cu ions and EPS was investigated by fluorimetric analysis. ICP-MS was used to test Cu ion adsorption to PS-COOH NPs in the presence and absence of algae. The interaction between PS-COOH NPs and the algal cell wall was assessed by fluorescence microscopy. Short- and long-term toxicity tests were carried out in parallel to assess the impact of PS-COOH NPs on algal growth. Results showed altered nanoparticle surface charge and hydrodynamic diameter following algal EPS exposure, supporting the hypothesis of a protein corona formation. In contrast, no absorption of Cu ions was observed on PS-COOH NPs, either in the presence or absence of algae. No differences on algal growth inhibition were observed between exposure to Cu only, and to Cu in combination with PS-COOH NPs, in short-term as well as long-term tests. However, after 72 h of exposure, the adsorption of PS-COOH NPs to algal cell walls appeared to correspond to morphological alterations, revealing potential disturbances in the mitotic cycle. Our findings confirm the ability of PS-COOH NPs to interact with EPS as shown for other nanomaterials. Environmentally realistic exposure scenarios are thus needed for evaluating nanoplastic toxicity, as nanoparticles will not maintain their pristine nature once released into natural media. Prolonged exposure and use of different end-points such as cell morphological changes and EPS production seem more reliable for the investigation of nanoplastic/algal cell interactions which can drive food chain transfer of nanoplastics and ultimately toxicity.


Subject(s)
Chlorophyta/drug effects , Copper/toxicity , Fresh Water/chemistry , Nanoparticles/toxicity , Polystyrenes/toxicity , Water Pollutants, Chemical/toxicity , Chlorophyta/growth & development , Copper/chemistry , Food Chain , Nanoparticles/chemistry , Polystyrenes/chemistry , Time Factors , Toxicity Tests , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...