Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Psychoneuroendocrinology ; 134: 105404, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34601342

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is implicated in the pathology of major depression and influences the inflammatory response. Prolonged immune system activation can cause depression symptoms, and individuals with low BDNF expression may be vulnerable to inflammation-induced depression. We tested the hypothesis that BDNF deficient mice are vulnerable to the induction of depressive-like behavior following peripheral immune challenge. BDNF heterozygous (BDNF+/-) or wild-type (BDNF+/+) littermate mice were injected intraperitoneally (i.p.) with endotoxin (lipopolysaccharide, LPS) to trigger an acute pro-inflammatory response. After resolution of the acute sickness response, central expression of inflammatory genes, kynurenine metabolites, and depressive-like behaviors across multiple dimensions (symptoms) were measured. BDNF+/- mice displayed an exaggerated neuroinflammatory response following peripheral immune challenge. Pro-inflammatory cytokines interleukin-1ß (IL-1ß), tumor necrosis factor α (TNFα) and interleukin-6 (IL-6) were overexpressed in BDNF+/- mice relative to BDNF+/+ littermate control mice. While behavioral despair and anxiety-like behavior was not different between genotypes, LPS-induced anhedonia-like behavior was significantly more pronounced in BDNF+/- mice relative to BDNF+/+ mice. The kynurenine pathway mediates the many depressive-like behavioral effects of peripheral LPS, and similar to pro-inflammatory cytokine gene expression, indoleamine 2,3-dioxygenase (IDO) expression and kynurenine metabolism was exaggerated in BDNF+/- mice. Genetic BDNF deficiency results in a dysregulated neuroinflammatory and metabolic response to peripheral immune challenge and in a specific vulnerability to the development of inflammation-induced anhedonia.

3.
Psychoneuroendocrinology ; 94: 1-10, 2018 08.
Article in English | MEDLINE | ID: mdl-29734055

ABSTRACT

Chronic stress or inflammation increases tryptophan metabolism along the kynurenine pathway (KP), and the generation of neuroactive kynurenine metabolites contributes to subsequent depressive-like behaviors. Microglia regulate KP balance by preferentially producing oxidative metabolites, including quinolinic acid. Research has focused on the interplay between cytokines and HPA axis-derived corticosteroids in regulating microglial activity and effects of KP metabolites directly on neurons; however, the potential role that KP metabolites have directly on microglial activity is unknown. Here, murine microglia were stimulated with lipopolysaccharide(LPS). After 6 h, mRNA expression of interleukin(IL)-1ß, IL-6, tumor necrosis factor(TNF)-α and inducible nitric oxide synthase(iNOS) was dose-dependently increased along with the rate-limiting enzymes for oxidative KP metabolism, indoleamine-2,3-dioxygenase(IDO)-1 and kynurenine 3-monooxygenase(KMO). By 24 h post-LPS, kynurenine and quinolinic acid in the media was elevated. Inhibiting KMO with Ro 61-8048 during LPS challenge attenuated extracellular nitrite accumulation and expression of KMO and TNF-α in response to LPS. Similarly, primary microglia isolated from KMO-/- mice exhibited a significantly reduced pro-inflammatory response to LPS compared to WT controls. To determine whether the substrate (kynurenine) or end product (quinolinic acid) of KMO-dependent metabolism modulates the LPS response, microglia were treated with increasing concentrations of L-kynurenine or quinolinic acid in combination with LPS or saline. Interestingly, quinolinic acid did not impact the microglial LPS response. However, L-kynurenine had dose-dependent inhibitory effect on the LPS response. These data are the first to show an anti-inflammatory effect of KMO inhibition on microglia during immune challenge and suggest that KP metabolic balance may play a direct role in regulating microglia activity.


Subject(s)
Kynurenine 3-Monooxygenase/metabolism , Kynurenine/metabolism , Microglia/metabolism , Animals , Brain/metabolism , Cell Line , Homeostasis/drug effects , Hypothalamo-Hypophyseal System/metabolism , Inflammation/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Male , Metabolic Networks and Pathways , Mice , Mice, Inbred C57BL , Microglia/physiology , Mixed Function Oxygenases/metabolism , Neuroimmunomodulation/immunology , Neuroimmunomodulation/physiology , Neurons/metabolism , Nitric Oxide Synthase Type II/metabolism , Pituitary-Adrenal System/metabolism , Quinolinic Acid/metabolism , Tumor Necrosis Factor-alpha/metabolism
4.
Int J Tryptophan Res ; 10: 1178646917694600, 2017.
Article in English | MEDLINE | ID: mdl-28469469

ABSTRACT

OBJECTIVE: Type 2 diabetes (T2D) is the primary case of chronic kidney disease (CKD). Inflammation is associated with metabolic dysregulation in patients with T2D and CKD. Tryptophan (TRP) metabolism may have relevance to the CKD outcomes and associated symptoms. We investigated the relationships of TRP metabolism with inflammatory markers in patients with T2D and CKD. METHODS: Data were collected from a well-characterized cohort of type 2 diabetic individuals with all stages of CKD, including patients on hemodialysis. Key TRP metabolites (kynurenine [KYN], kynurenic acid [KYNA], and quinolinic acid [QA]), proinflammatory cytokines (tumor necrosis factor-α [TNF-α] and interleukin-6 [IL-6]), and C-reactive protein were measured in plasma. The KYN/TRP ratio was utilized as a surrogate marker for indoleamine 2,3-dioxygenase 1 (IDO1) enzyme activity. RESULTS: There was a significant inverse association between circulating TRP level and stages of CKD (P< 0.0001). Downstream bioactive TRP metabolites KYN, KYNA, and QA were positively and robustly correlated with the severity of kidney disease (P < 0.0001). In multiple linear regression, neither TNF-α nor IL-6 was independently related to KYN/TRP ratio after adjusting for estimated glomerular filtration rate (eGFR). Only TNF-α was independently related to KYN after taking into account the effect of eGFR. CONCLUSIONS: Chronic kidney disease secondary to T2D may be associated with accumulation of toxic TRP metabolites due to both inflammation and impaired kidney function. Future longitudinal studies to determine whether the accumulation of KYN directly contributes to CKD progression and associated symptoms in patients with T2D are warranted.

5.
J Neuroinflammation ; 13(1): 124, 2016 05 27.
Article in English | MEDLINE | ID: mdl-27233247

ABSTRACT

BACKGROUND: Inflammation increases the risk of developing depression-related symptoms, and tryptophan metabolism is an important mediator of these behavior changes. Peripheral immune activation results in central up-regulation of pro-inflammatory cytokine expression, microglia activation, and the production of neurotoxic kynurenine metabolites. The neuroinflammatory and kynurenine metabolic response to peripheral immune activation has been largely characterized at the whole brain level. It is unknown if this metabolic response exhibits regional specificity even though the unique indoleamine 2,3-dioxygenase (IDO)-dependent depressive-like behaviors are known to be controlled by discrete brain regions. Therefore, regional characterization of neuroinflammation and kynurenine metabolism might allow for better understanding of the potential mechanisms that mediate inflammation-associated behavior changes. METHODS: Following peripheral immune challenge with lipopolysaccharide (LPS), brain tissue from behaviorally relevant regions was analyzed for changes in mRNA of neuroinflammatory targets and kynurenine pathway enzymes. The metabolic balance of the kynurenine pathway was also determined in the peripheral circulation and these brain regions. RESULTS: Peripheral LPS treatment resulted in region-independent up-regulation of brain expression of pro-inflammatory cytokines and glial cellular markers indicative of a neuroinflammatory response. The expression of kynurenine pathway enzymes was also largely region-independent. While the kynurenine/tryptophan ratio was elevated significantly in both the plasma and in each brain regions evaluated, the balance of kynurenine metabolism was skewed toward production of neurotoxic metabolites in the hippocampus. CONCLUSIONS: The upstream neuroinflammatory processes, such as pro-inflammatory cytokine production, glial cell activation, and kynurenine production, may be similar throughout the brain. However, it appears that the balance of downstream kynurenine metabolism is a tightly regulated brain region-dependent process.


Subject(s)
Brain/metabolism , Kynurenine/metabolism , Lipopolysaccharides/toxicity , Neurogenic Inflammation/chemically induced , Neurogenic Inflammation/pathology , Signal Transduction/drug effects , Animals , Brain/drug effects , Calcium-Binding Proteins/metabolism , Chromatography, Liquid , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Kynurenine/genetics , Male , Mass Spectrometry , Mice , Mice, Inbred C57BL , Microfilament Proteins/metabolism , RNA, Messenger/metabolism , Signal Transduction/genetics , Time Factors
6.
Int J Neuropsychopharmacol ; 19(3): pyv089, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26232788

ABSTRACT

BACKGROUND: Brain-derived neurotrophic factor (BDNF) deficiency confers vulnerability to stress, but the mechanisms are unclear. BDNF(+/-) mice exhibit behavioral, physiological, and neurochemical changes following low-level stress that are hallmarks of major depression. After immune challenge, neuroinflammation-induced changes in tryptophan metabolism along the kynurenine pathway mediate depressive-like behaviors. METHODS: We hypothesized that BDNF(+/-) mice would be more susceptible to stress-induced neuroinflammation and kynurenine metabolism, so BDNF(+/-) or wild-type littermate mice were subject to repeated unpredictable mild stress. Proinflammatory cytokine expression and kynurenine metabolites were measured. RESULTS: Unpredictable mild stress did not induce neuroinflammation. However, only wild-type mice produced the neuroprotective factors interleukin-10 and kynurenic acid in response to repeated unpredictable mild stress. In BDNF(+/-) mice, kynurenine was metabolized preferentially to the neurotoxic intermediate 3-hydroxykynurenine following repeated unpredictable mild stress. CONCLUSIONS: Our data suggest that BDNF may modulate kynurenine pathway metabolism during stress and provide a novel molecular mechanism of vulnerability and resilience to the development of stress-precipitated psychiatric disorders.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Interleukin-10/metabolism , Kynurenic Acid/metabolism , Kynurenine/metabolism , Stress, Psychological/immunology , Animals , Brain-Derived Neurotrophic Factor/genetics , Disease Models, Animal , Male , Mice, Inbred C57BL , Mice, Transgenic , Neuroimmunomodulation/physiology , Uncertainty
7.
J Vis Exp ; (96)2015 Feb 04.
Article in English | MEDLINE | ID: mdl-25741905

ABSTRACT

Cognitive impairment, particularly involving dysfunction of circuitry within the prefrontal cortex (PFC), represents a core feature of many neuropsychiatric and neurodevelopmental disorders, including depression, post-traumatic stress disorder, schizophrenia and autism spectrum disorder. Deficits in cognitive function also represent the most difficult symptom domain to successfully treat, as serotonin reuptake inhibitors and tricyclic antidepressants have only modest effects. Functional neuroimaging studies and postmortem analysis of human brain tissue implicate the PFC as being a primary region of dysregulation in patients with these disorders. However, preclinical behavioral assays used to assess these deficits in mouse models which can be readily manipulated genetically and could provide the basis for studies of new treatment avenues have been underutilized. Here we describe the adaptation of a behavioral assay, the attentional set shifting task (AST), to be performed in mice to assess prefrontal cortex mediated cognitive deficits. The neural circuits underlying behavior during the AST are highly conserved across humans, nonhuman primates and rodents, providing excellent face, construct and predictive validity.


Subject(s)
Cognition Disorders/physiopathology , Prefrontal Cortex/physiopathology , Animals , Attention , Behavior, Animal/physiology , Cognition/physiology , Cognition Disorders/diagnosis , Discrimination Learning , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Schizophrenia/physiopathology , Stress Disorders, Post-Traumatic/physiopathology , Task Performance and Analysis
8.
PLoS One ; 8(8): e71341, 2013.
Article in English | MEDLINE | ID: mdl-23977020

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder primarily characterized by progressive loss of dopamine neurons, leading to loss of motor coordination. However, PD is associated with a high rate of non-motor neuropsychiatric comorbities that often develop before the onset of movement symptoms. The MitoPark transgenic mouse model is the first to recapitulate the cardinal clinical features, namely progressive neurodegeneration and death of neurons, loss of motor function and therapeutic response to L-DOPA. To investigate whether MitoPark mice exhibit early onset of cognitive impairment, a non-motor neuropsychiatric comorbidity, we measured performance on a spatial learning and memory task before (∼8 weeks) or after (∼20 weeks) the onset of locomotor decline in MitoPark mice or in littermate controls. Consistent with previous studies, we established that a progressive loss of spontaneous locomotor activity began at 12 weeks of age, which was followed by progressive loss of body weight beginning at 16-20 weeks. Spatial learning and memory was measured using the Barnes Maze. By 20 weeks of age, MitoPark mice displayed a substantial reduction in overall locomotor activity that impaired their ability to perform the task. However, in the 8-week-old mice, locomotor activity was no different between genotypes, yet MitoPark mice took longer, traveled further and committed more errors than same age control mice, while learning to successfully navigate the maze. The modest between-day learning deficit of MitoPark mice was characterized by impaired within-day learning during the first two days of testing. No difference was observed between genotypes during probe trials conducted one or twelve days after the final acquisition test. Additionally, 8-week-old MitoPark mice exhibited impaired novel object recognition when compared to control mice. Together, these data establish that mild cognitive impairment precedes the loss of motor function in a novel rodent model of PD, which may provide unique opportunities for therapeutic development.


Subject(s)
Cognition , Motor Activity , Parkinson Disease/physiopathology , Spatial Behavior , Animals , Body Weight , Disease Models, Animal , Female , Genotype , Male , Maze Learning , Mice , Mice, Transgenic , Parkinson Disease/genetics , Phenotype , Time Factors
9.
Horm Behav ; 62(3): 202-9, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22504306

ABSTRACT

Upregulation of indoleamine 2,3-dioxygenase (IDO) by proinflammatory cytokines has been implicated as a biological mediator of inflammation-related mood disorders. Clinical reports on this neuro-immune interaction remain correlative, while mechanism-centered preclinical experiments have focused on a relatively narrow, and somewhat controversial, survey of depression-like behaviors that include the forced swim and tail suspension tests. Here, we sought to determine whether peripheral immune challenge with Escherichia coli, lipopolysaccharides (LPS) precipitates the development of translationally relevant depression-like behaviors and to investigate the role of IDO in mediating these LPS-induced behaviors. Intraperitoneal injection of C57BL/6J mice with LPS resulted in a robust, but transient, reduction in exploratory locomotor activity (eLMA) that returned to near baseline levels by 24h. Sucrose preference, a preclinical correlate of anhedonia, was diminished by more than 20% in LPS-treated compared to saline-treated control mice, and LPS induced a significant increase in anxiety-like behavior at 24h that was independent eLMA. Pretreatment of mice with an IDO inhibitor, 1-methyltryptophan (1MT), ablated the anxiogenic effects of LPS, while having no impact on sickness associated changes in body weight or eLMA. Additionally, 1MT pretreatment attenuated the LPS-induced reduction in sucrose preference, which was also confirmed in IDO-1 null mice. Interestingly, acute systemic administration of l-kynurenine, the enzymatic product of IDO, precipitated an anhedonic and anxiogenic effect in naïve mice without effect on eLMA. In a preclinical model, these data implicate IDO as a pivotal mediator of LPS-induced depression- and anxiety-like behavior.


Subject(s)
Anhedonia/physiology , Anxiety/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Anhedonia/drug effects , Animals , Anxiety/metabolism , Behavior, Animal/drug effects , Behavior, Animal/physiology , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Lipopolysaccharides/pharmacology , Mice , Mice, Knockout , Motor Activity/drug effects , Motor Activity/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...