Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Photonics ; 11(4): 1673-1683, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38645995

ABSTRACT

High-order harmonic generation (HHG) arising from the nonperturbative interaction of intense light fields with matter constitutes a well-established tabletop source of coherent extreme-ultraviolet and soft X-ray radiation, which is typically emitted as attosecond pulse trains. However, ultrafast applications increasingly demand isolated attosecond pulses (IAPs), which offer great promise for advancing precision control of electron dynamics. Yet, the direct generation of IAPs typically requires the synthesis of near-single-cycle intense driving fields, which is technologically challenging. In this work, we theoretically demonstrate a novel scheme for the straightforward and compact generation of IAPs from multicycle infrared drivers using hollow capillary fibers (HCFs). Starting from a standard, intense multicycle infrared pulse, a light transient is generated by extreme soliton self-compression in a HCF with decreasing pressure and is subsequently used to drive HHG in a gas target. Owing to the subcycle confinement of the HHG process, high-contrast IAPs are continuously emitted almost independently of the carrier-envelope phase (CEP) of the optimally self-compressed drivers. This results in a CEP-robust scheme which is also stable under macroscopic propagation of the high harmonics in a gas target. Our results open the way to a new generation of integrated all-fiber IAP sources, overcoming the efficiency limitations of usual gating techniques for multicycle drivers.

2.
Struct Dyn ; 8(3): 034104, 2021 May.
Article in English | MEDLINE | ID: mdl-34169117

ABSTRACT

Attosecond extreme ultraviolet (XUV) and soft x-ray sources provide powerful new tools for studying ultrafast molecular dynamics with atomic, state, and charge specificity. In this report, we employ attosecond transient absorption spectroscopy (ATAS) to follow strong-field-initiated dynamics in vinyl bromide. Probing the Br M edge allows one to assess the competing processes in neutral and ionized molecular species. Using ab initio non-adiabatic molecular dynamics, we simulate the neutral and cationic dynamics resulting from the interaction of the molecule with the strong field. Based on the dynamics results, the corresponding time-dependent XUV transient absorption spectra are calculated by applying high-level multi-reference methods. The state-resolved analysis obtained through the simulated dynamics and related spectral contributions enables a detailed and quantitative comparison with the experimental data. The main outcome of the interaction with the strong field is unambiguously the population of the first three cationic states, D 1, D 2, and D 3. The first two show exclusively vibrational dynamics while the D 3 state is characterized by an ultrafast dissociation of the molecule via C-Br bond rupture within 100 fs in 50% of the analyzed trajectories. The combination of the three simulated ionic transient absorption spectra is in excellent agreement with the experimental results. This work establishes ATAS in combination with high-level multi-reference simulations as a spectroscopic technique capable of resolving coupled non-adiabatic electronic-nuclear dynamics in photoexcited molecules with sub-femtosecond resolution.

3.
Nat Commun ; 11(1): 4042, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32788648

ABSTRACT

Conical intersections between electronic states often dictate the chemistry of photoexcited molecules. Recently developed sources of ultrashort extreme ultraviolet (XUV) pulses tuned to element-specific transitions in molecules allow for the unambiguous detection of electronic state-switching at a conical intersection. Here, the fragmentation of photoexcited iso-propyl iodide and tert-butyl iodide molecules (i-C3H7I and t-C4H9I) through a conical intersection between 3Q0/1Q1 spin-orbit states is revealed by ultrafast XUV transient absorption measuring iodine 4d core-to-valence transitions. The electronic state-sensitivity of the technique allows for a complete mapping of molecular dissociation from photoexcitation to photoproducts. In both molecules, the sub-100 fs transfer of a photoexcited wave packet from the 3Q0 state into the 1Q1 state at the conical intersection is captured. The results show how differences in the electronic state-switching of the wave packet in i-C3H7I and t-C4H9I directly lead to differences in the photoproduct branching ratio of the two systems.

4.
Nature ; 578(7795): 386-391, 2020 02.
Article in English | MEDLINE | ID: mdl-32042171

ABSTRACT

Attosecond pulses are central to the investigation of valence- and core-electron dynamics on their natural timescales1-3. The reproducible generation and characterization of attosecond waveforms has been demonstrated so far only through the process of high-order harmonic generation4-7. Several methods for shaping attosecond waveforms have been proposed, including the use of metallic filters8,9, multilayer mirrors10 and manipulation of the driving field11. However, none of these approaches allows the flexible manipulation of the temporal characteristics of the attosecond waveforms, and they suffer from the low conversion efficiency of the high-order harmonic generation process. Free-electron lasers, by contrast, deliver femtosecond, extreme-ultraviolet and X-ray pulses with energies ranging from tens of microjoules to a few millijoules12,13. Recent experiments have shown that they can generate subfemtosecond spikes, but with temporal characteristics that change shot-to-shot14-16. Here we report reproducible generation of high-energy (microjoule level) attosecond waveforms using a seeded free-electron laser17. We demonstrate amplitude and phase manipulation of the harmonic components of an attosecond pulse train in combination with an approach for its temporal reconstruction. The results presented here open the way to performing attosecond time-resolved experiments with free-electron lasers.

5.
Nat Commun ; 10(1): 3133, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31311933

ABSTRACT

Attosecond probing of core-level electronic transitions provides a sensitive tool for studying valence molecular dynamics with atomic, state, and charge specificity. In this report, we employ attosecond transient absorption spectroscopy to follow the valence dynamics of strong-field initiated processes in methyl bromide. By probing the 3d core-to-valence transition, we resolve the strong field excitation and ensuing fragmentation of the neutral σ* excited states of methyl bromide. The results provide a clear signature of the non-adiabatic passage of the excited state wavepacket through a conical intersection. We additionally observe competing, strong field initiated processes arising in both the ground state and ionized molecule corresponding to vibrational and spin-orbit motion, respectively. The demonstrated ability to resolve simultaneous dynamics with few-femtosecond resolution presents a clear path forward in the implementation of attosecond XUV spectroscopy as a general tool for probing competing and complex molecular phenomena with unmatched temporal resolution.

6.
J Phys Chem Lett ; 9(24): 6927-6933, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30444124

ABSTRACT

Ultrafast XUV chemistry is offering new opportunities to decipher the complex dynamics taking place in highly excited molecular states and thus better understand fundamental natural phenomena as molecule formation in interstellar media. We used ultrashort XUV light pulses to perform XUV pump-IR probe experiments in caffeine as a model of prebiotic molecule. We observed a 40 fs decay of excited cationic states. Guided by quantum calculations, this time scale is interpreted in terms of a nonadiabatic cascade through a large number of highly correlated states. This shows that the correlation driven nonadiabatic relaxation seems to be a general process for highly excited states, which might impact our understanding of molecular processing in interstellar media.

7.
Phys Rev Lett ; 120(23): 233201, 2018 Jun 08.
Article in English | MEDLINE | ID: mdl-29932679

ABSTRACT

Experiments are presented on real-time probing of coherent electron dynamics in xenon initiated by strong-field double ionization. Attosecond transient absorption measurements allow for characterization of electronic coherences as well as relative ionization timings in multiple electronic states of Xe^{+} and Xe^{2+}. A high degree of coherence g=0.4 is observed between ^{3}P_{2}^{0}-^{3}P_{0}^{0} of Xe^{2+}, whereas for other possible pairs of states the coherences are below the detection limits of the experiments. A comparison of the experimental results with numerical simulations based on an uncorrelated electron-emission model shows that the coherences produced by strong-field double ionization are more selective than predicted. Surprisingly short ionization time delays, 0.85 fs, 0.64 fs, and 0.75 fs relative to Xe^{+} formation, are also measured for the ^{3}P_{2}, ^{3}P_{0}, and ^{3}P_{1} states of Xe^{2+}, respectively. Both the unpredicted selectivity in the formation of coherence and the subfemtosecond time delays of specific states provide new insight into correlated electron dynamics in strong-field double ionization.

8.
Opt Lett ; 42(4): 811-814, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28198871

ABSTRACT

Femtosecond laser pulses lasting only a few optical periods hold the potential for probing and manipulating the electronic degrees of freedom within matter. However, the generation of high-contrast, few-cycle pulses in the high power limit still remains nontrivial. In this Letter, we present the application of ammonium dihydrogen phosphate (ADP) as an optical medium for compensating for the higher-order dispersion of a carrier-envelope stable few-cycle waveform centered at 735 nm. The ADP crystal is capable of removing the residual third-order dispersion present in the spectral phase of an input pulse, resulting in near-transform-limited 2.9 fs pulses lasting only 1.2 optical cycles in duration. By utilizing these high-contrast, few-cycle pulses for high-harmonic generation, we are able to produce nanojoule-scale, isolated attosecond pulses.

9.
Phys Rev Lett ; 111(12): 123901, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-24093261

ABSTRACT

The attosecond streak camera method is usually implemented to characterize the temporal phase and amplitude of isolated attosecond pulses produced by high-order harmonic generation. This approach, however, does not provide any information about the carrier-envelope phase of the attosecond pulses. We demonstrate that the photoelectron spectra generated by an attosecond waveform and an intense synchronized infrared field are sensitive to the electric field of the attosecond pulse. The dependence on the carrier-envelope phase of the attosecond pulse is understood in terms of the coherent superposition of two photoelectron wave packets. This effect suggests an experimentally feasible method for complete reconstruction of attosecond waveforms.

SELECTION OF CITATIONS
SEARCH DETAIL
...