Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 21(6): e3002121, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37315073

ABSTRACT

Pluripotency defines the unlimited potential of individual cells of vertebrate embryos, from which all adult somatic cells and germ cells are derived. Understanding how the programming of pluripotency evolved has been obscured in part by a lack of data from lower vertebrates; in model systems such as frogs and zebrafish, the function of the pluripotency genes NANOG and POU5F1 have diverged. Here, we investigated how the axolotl ortholog of NANOG programs pluripotency during development. Axolotl NANOG is absolutely required for gastrulation and germ-layer commitment. We show that in axolotl primitive ectoderm (animal caps; ACs) NANOG and NODAL activity, as well as the epigenetic modifying enzyme DPY30, are required for the mass deposition of H3K4me3 in pluripotent chromatin. We also demonstrate that all 3 protein activities are required for ACs to establish the competency to differentiate toward mesoderm. Our results suggest the ancient function of NANOG may be establishing the competence for lineage differentiation in early cells. These observations provide insights into embryonic development in the tetrapod ancestor from which terrestrial vertebrates evolved.


Subject(s)
Homeodomain Proteins , Pluripotent Stem Cells , Animals , Homeodomain Proteins/metabolism , Ambystoma mexicanum/genetics , Ambystoma mexicanum/metabolism , Zebrafish/genetics , Cell Differentiation , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Gene Expression Regulation, Developmental
2.
Development ; 141(12): 2429-40, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24917499

ABSTRACT

A common feature of development in most vertebrate models is the early segregation of the germ line from the soma. For example, in Xenopus and zebrafish embryos primordial germ cells (PGCs) are specified by germ plasm that is inherited from the egg; in mice, Blimp1 expression in the epiblast mediates the commitment of cells to the germ line. How these disparate mechanisms of PGC specification evolved is unknown. Here, in order to identify the ancestral mechanism of PGC specification in vertebrates, we studied PGC specification in embryos from the axolotl (Mexican salamander), a model for the tetrapod ancestor. In the axolotl, PGCs develop within mesoderm, and classic studies have reported their induction from primitive ectoderm (animal cap). We used an axolotl animal cap system to demonstrate that signalling through FGF and BMP4 induces PGCs. The role of FGF was then confirmed in vivo. We also showed PGC induction by Brachyury, in the presence of BMP4. These conditions induced pluripotent mesodermal precursors that give rise to a variety of somatic cell types, in addition to PGCs. Irreversible restriction of the germ line did not occur until the mid-tailbud stage, days after the somatic germ layers are established. Before this, germline potential was maintained by MAP kinase signalling. We propose that this stochastic mechanism of PGC specification, from mesodermal precursors, is conserved in vertebrates.


Subject(s)
Ambystoma mexicanum/embryology , Gene Expression Regulation, Developmental , Germ Cells/cytology , Mesoderm/cytology , Animals , Bone Morphogenetic Protein 4/metabolism , Cell Differentiation , Fetal Proteins/metabolism , Fibroblast Growth Factors/metabolism , In Situ Hybridization , MAP Kinase Signaling System , Pluripotent Stem Cells/cytology , Signal Transduction , Stochastic Processes , T-Box Domain Proteins/metabolism , Xenopus
3.
Development ; 137(18): 2973-80, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20736286

ABSTRACT

Cells in the pluripotent ground state can give rise to somatic cells and germ cells, and the acquisition of pluripotency is dependent on the expression of Nanog. Pluripotency is conserved in the primitive ectoderm of embryos from mammals and urodele amphibians, and here we report the isolation of a Nanog ortholog from axolotls (axNanog). axNanog does not contain a tryptophan repeat domain and is expressed as a monomer in the axolotl animal cap. The monomeric form is sufficient to regulate pluripotency in mouse embryonic stem cells, but axNanog dimers are required to rescue LIF-independent self-renewal. Our results show that protein interactions mediated by Nanog dimerization promote proliferation. More importantly, they demonstrate that the mechanisms governing pluripotency are conserved from urodele amphibians to mammals.


Subject(s)
Embryonic Stem Cells/metabolism , Homeodomain Proteins/metabolism , Pluripotent Stem Cells/metabolism , Ambystoma mexicanum , Amphibians , Animals , Cell Line , Cell Proliferation , Homeodomain Proteins/genetics , Humans , Mammals , Mice , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...