Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Oncogene ; 26(12): 1757-68, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-16964284

ABSTRACT

Prohibitin (PHB) is a cell cycle regulatory protein, known to repress E2F1-mediated gene activation via recruitment of transcriptional regulatory factors such as retinoblastoma and histone deacetylase 1 (HDAC1). We previously identified PHB as a target protein of androgen signaling in prostate cancer cells and showed that downregulation of PHB is required for androgen-induced cell cycle entry in these cells. We now present evidence that PHB, which has 54% homology at the protein level to the oestrogen receptor corepressor REA (repressor of oestrogen receptor activity), can repress androgen receptor (AR)-mediated transcription and androgen-dependent cell growth. Depletion of endogenous PHB resulted in an increase in expression of the androgen-regulated prostate-specific antigen gene. The repression appears to be specific to androgen and closely related receptors, as it is also evident for the glucocorticoid and progesterone, but not oestrogen, receptors. In spite of interaction of PHB with HDAC1, HDAC activity is not required for this repression. Although AR and PHB could be co-immunoprecipitated, no direct interaction was detectable, suggesting that PHB forms part of a repressive complex with the AR. Competition with the co-activator SRC1 further suggests that formation of a complex with AR, PHB and other cofactors is the mechanism by which repression is achieved. It appears then that repression of AR activity is one mechanism by which PHB inhibits androgen-dependent growth of prostate cells. Further, this study implies that the AR itself could, by mediating downregulation of a corepressor, be involved in the progression of prostate tumours to the hormone refractory stage.


Subject(s)
Androgen Receptor Antagonists , Androgens/physiology , Down-Regulation , Repressor Proteins/physiology , Amino Acid Sequence , Animals , COS Cells , Chlorocebus aethiops , Humans , Microscopy, Confocal , Molecular Sequence Data , Mutagenesis, Site-Directed , Prohibitins , Repressor Proteins/chemistry , Repressor Proteins/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid
2.
Biochem Soc Trans ; 34(Pt 6): 1124-7, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17073766

ABSTRACT

Anti-androgens used in prostate cancer therapy inhibit AR (androgen receptor) activity via largely unknown mechanisms. Although initially successful in most cases, they eventually fail and the disease progresses. We need to elucidate how anti-androgens work to understand why they fail, and prolong their effects or design further therapies. Using a cellular model, we found different anti-androgens have diverse effects on subcellular localization of AR, revealing that they work via different mechanisms and suggesting that an informed sequential treatment regime may benefit patients. In the presence of the anti-androgens bicalutamide and hydroxyflutamide, a significant proportion of the AR is translocated to the nucleus but remains inactive. Receptor inhibition under these conditions is likely to involve recruitment of co-repressor proteins, which interact with antagonist-occupied receptor but inhibit receptor-dependent transcription. Which co-repressors are required in vivo for AR repression by anti-androgens is not clear, but one candidate is the Notch effector Hey1. This inhibits ligand-dependent activity of the AR but not other steroid receptors. Further, it is excluded from the nucleus in most human prostate cancers, suggesting that abnormal subcellular distribution of co-repressors may contribute to the aberrant hormonal responses observed in prostate cancer. A decrease in co-repressor function is one possible explanation for the development of anti-androgen-resistant prostate cancer, and this suggests that it may not occur at the gross level of protein expression.


Subject(s)
Androgen Antagonists/therapeutic use , Antineoplastic Agents/therapeutic use , Prostatic Neoplasms/physiopathology , Humans , Male , Models, Biological , Prostatic Hyperplasia/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL