Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36706677

ABSTRACT

Prohibitins (PHB1 and PHB2) are ubiquitously expressed proteins which play critical roles in multiple biological processes, and together form the ring-like PHB complex found in phospholipid-rich cellular compartments including lipid rafts. Recent studies have implicated PHB1 as a mediator of fatty acid transport as well as a membrane scaffold mediating B lymphocyte and mast cell signal transduction. However, the specific role of PHBs in the macrophage have not been characterized, including their role in fatty acid uptake and lipid raft-mediated inflammatory signaling. We hypothesized that the PHB complex regulates macrophage inflammatory signaling through the formation of lipid rafts. To evaluate our hypothesis, RAW 264.7 macrophages were transduced with shRNA against PHB1, PHB2, or scrambled control (Scr), and then stimulated with lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNF-α), which activate lipid raft-dependent receptor signaling (CD14/TLR4 and TNFR1, respectively). PHB1 knockdown was lethal, whereas PHB2 knockdown (PHB2kd), which also resulted in decreased PHB1 expression, led to attenuated nuclear factor-kappa-B (NF-κB) activation and subsequent cytokine and chemokine production. PHB2kd macrophages also had decreased cell surface TNFR1, CD14, TLR4, and lipid raft marker ganglioside GM1 at baseline and post-stimuli. Post-LPS, PHB2kd macrophages did not increase the concentration of cellular saturated, monounsaturated, and polyunsaturated fatty acids. This was accompanied by decreased lipid raft formation and modified plasma membrane molecular packing, further supporting the PHB complex's importance in lipid raft formation. Taken together, these data suggest a critical role for PHBs in regulating macrophage inflammatory signaling via maintenance of fatty acid composition and lipid raft structure. SUMMARY: Prohibitins are proteins found in phospholipid-rich cellular compartments, including lipid rafts, that play important roles in signaling, transcription, and multiple other cell functions. Macrophages are key cells in the innate immune response and the presence of membrane lipid rafts is integral to signal transduction, but the role of prohibitins in macrophage lipid rafts and associated signaling is unknown. To address this question, prohibitin knockdown macrophages were generated and responses to lipopolysaccharide and tumor necrosis factor-alpha, which act through lipid raft-dependent receptors, were analyzed. Prohibitin knockdown macrophages had significantly decreased cytokine and chemokine production, transcription factor activation, receptor expression, lipid raft assembly and membrane packing, and altered fatty acid remodeling. These data indicate a novel role for prohibitins in macrophage inflammatory signaling through regulation of fatty acid composition and lipid raft formation.


Subject(s)
Prohibitins , Receptors, Tumor Necrosis Factor, Type I , Receptors, Tumor Necrosis Factor, Type I/metabolism , Lipopolysaccharides , Toll-Like Receptor 4/metabolism , Fatty Acids/metabolism , Tumor Necrosis Factor-alpha/metabolism , Signal Transduction , Macrophages , Cytokines/metabolism , Cell Membrane/metabolism , Membrane Microdomains/metabolism , Phospholipids/metabolism , Chemokines/metabolism
2.
Toxicol Appl Pharmacol ; 462: 116381, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36681128

ABSTRACT

Damage associated molecular patterns (DAMPs) are molecules released from dead/dying cells following toxicant and/or environmental exposures that activate the immune response through binding of pattern recognition receptors (PRRs). Excessive production of DAMPs or failed clearance leads to chronic inflammation and delayed inflammation resolution. One category of DAMPs are oxidized phospholipids (oxPLs) produced upon exposure to high levels of oxidative stress, such as following ozone (O3) induced inflammation. OxPLs are bound by multiple classes of PRRs that include scavenger receptors (SRs) such as SR class B-1 (SR-BI) and toll-like receptors (TLRs). Interactions between oxPLs and PRRs appear to regulate inflammation; however, the role of SR-BI in oxPL-induced lung inflammation has not been defined. Therefore, we hypothesize that SR-BI is critical in protecting the lung from oxPL-induced pulmonary inflammation/injury. To test this hypothesis, C57BL/6J (WT) female mice were dosed with oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (oxPAPC) by oropharyngeal aspiration which increased pulmonary SR-BI expression. Following oxPAPC exposure, SR-BI deficient (SR-BI-/-) mice exhibited increased lung pathology and inflammatory cytokine/chemokine production. Lipidomic analysis revealed that SR-BI-/- mice had an altered pulmonary lipidome prior to and following oxPAPC exposure, which correlated with increased oxidized phosphatidylcholines (PCs). Finally, we characterized TLR4-mediated activation of NF-κB following oxPAPC exposure and discovered that SR-BI-/- mice had increased TLR4 mRNA expression in lung tissue and macrophages, increased nuclear p65, and decreased cytoplasmic IκBα. Overall, we conclude that SR-BI is required for limiting oxPAPC-induced lung pathology by maintaining lipid homeostasis, reducing oxidized PCs, and attenuating TLR4-NF-κB activation, thereby preventing excessive and persistent inflammation.


Subject(s)
Phospholipids , Pneumonia , Animals , Female , Mice , Carrier Proteins , Inflammation/chemically induced , Mice, Inbred C57BL , NF-kappa B/metabolism , Pneumonia/chemically induced , Pneumonia/prevention & control , Receptors, Scavenger/genetics , Receptors, Scavenger/metabolism , Toll-Like Receptor 4/metabolism
3.
Toxicol Sci ; 183(1): 170-183, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34175951

ABSTRACT

Ozone (O3) is a criteria air pollutant known to increase the morbidity and mortality of cardiopulmonary diseases. This occurs through a pulmonary inflammatory response characterized by increased recruitment of immune cells into the airspace, pro-inflammatory cytokines, and pro-inflammatory lipid mediators. Recent evidence has demonstrated sex-dependent differences in the O3-induced pulmonary inflammatory response. However, it is unknown if this dimorphic response is evident in pulmonary lipid mediator metabolism. We hypothesized that there are sex-dependent differences in lipid mediator production following acute O3 exposure. Male and female C57BL/6J mice were exposed to 1 part per million O3 for 3 h and were necropsied at 6 or 24 h following exposure. Lung lavage was collected for cell differential and total protein analysis, and lung tissue was collected for mRNA analysis, metabololipidomics, and immunohistochemistry. Compared with males, O3-exposed female mice had increases in airspace neutrophilia, neutrophil chemokine mRNA, pro-inflammatory eicosanoids such as prostaglandin E2, and specialized pro-resolving mediators (SPMs), such as resolvin D5 in lung tissue. Likewise, precursor fatty acids (arachidonic and docosahexaenoic acid; DHA) were increased in female lung tissue following O3 exposure compared with males. Experiments with ovariectomized females revealed that loss of ovarian hormones exacerbates pulmonary inflammation and injury. However, eicosanoid and SPM production were not altered by ovariectomy despite depleted pulmonary DHA concentrations. Taken together, these data indicate that O3 drives an increased pulmonary inflammatory and bioactive lipid mediator response in females. Furthermore, ovariectomy increases susceptibility to O3-induced pulmonary inflammation and injury, as well as decreases pulmonary DHA concentrations.


Subject(s)
Ozone , Sex Characteristics , Animals , Eicosanoids , Female , Lung , Male , Mice , Mice, Inbred C57BL , Ozone/toxicity
4.
Am J Respir Cell Mol Biol ; 64(6): 698-708, 2021 06.
Article in English | MEDLINE | ID: mdl-33647226

ABSTRACT

Asthma is a common respiratory disease currently affecting more than 300 million worldwide and is characterized by airway inflammation, hyperreactivity, and remodeling. It is a heterogeneous disease consisting of corticosteroid-sensitive T-helper cell type 2-driven eosinophilic and corticosteroid-resistant, T-helper cell type 17-driven neutrophilic phenotypes. One pathway recently described to regulate asthma pathogenesis is cholesterol trafficking. Scavenger receptors, in particular SR-BI (scavenger receptor class B type I), are known to direct cellular cholesterol uptake and efflux. We recently defined SR-BI functions in pulmonary host defense; however, the function of SR-BI in asthma pathogenesis is unknown. To elucidate the role of SR-BI in allergic asthma, SR-BI-sufficient (SR-BI+/+) and SR-BI-deficient (SR-BI-/-) mice were sensitized (Days 0 and 7) and then challenged (Days 14, 15, and 16) with a house dust mite (HDM) preparation administered through oropharyngeal aspiration. Airway inflammation and cytokine production were quantified on Day 17. When compared with SR-BI+/+ mice, the HDM-challenged SR-BI-/- mice had increased neutrophils and pulmonary IL-17A production in BAL fluid. This augmented IL-17A production in SR-BI-/- mice originated from a non-T-cell source that included neutrophils and alveolar macrophages. Given that SR-BI regulates adrenal steroid hormone production, we tested whether the changes in SR-BI-/- mice were glucocorticoid dependent. Indeed, SR-BI-/- mice were adrenally insufficient during the HDM challenge, and corticosterone replacement decreased pulmonary neutrophilia and IL-17A production in SR-BI-/- mice. Taken together, these data indicate that SR-BI dampens pulmonary neutrophilic inflammation and IL-17A production in allergic asthma at least in part by maintaining adrenal function.


Subject(s)
Asthma/metabolism , Asthma/pathology , CD36 Antigens/metabolism , Inflammation/pathology , Interleukin-17/metabolism , Neutrophils/pathology , Adrenal Insufficiency/complications , Adrenal Insufficiency/immunology , Animals , Asthma/immunology , Asthma/parasitology , CD36 Antigens/deficiency , Hypersensitivity/complications , Lung/parasitology , Lung/pathology , Male , Mice, Inbred C57BL , Neutrophils/immunology , Ovalbumin/immunology , Pyroglyphidae/physiology , Th17 Cells/immunology
5.
Mol Metab ; 34: 1-15, 2020 04.
Article in English | MEDLINE | ID: mdl-32180550

ABSTRACT

OBJECTIVE: Estrogen receptor-α (ERα) is a nuclear receptor family member thought to substantially contribute to the metabolic regulation of skeletal muscle. However, previous mouse models utilized to assess the necessity of ERα signaling in skeletal muscle were confounded by altered developmental programming and/or influenced by secondary effects, making it difficult to assign a causal role for ERα. The objective of this study was to determine the role of skeletal muscle ERα in regulating metabolism in the absence of confounding factors of development. METHODS: A novel mouse model was developed allowing for induced deletion of ERα in adult female skeletal muscle (ERαKOism). ERαshRNA was also used to knockdown ERα (ERαKD) in human myotubes cultured from primary human skeletal muscle cells isolated from muscle biopsies from healthy and obese insulin-resistant women. RESULTS: Twelve weeks of HFD exposure had no differential effects on body composition, VO2, VCO2, RER, energy expenditure, and activity counts across genotypes. Although ERαKOism mice exhibited greater glucose intolerance than wild-type (WT) mice after chronic HFD, ex vivo skeletal muscle glucose uptake was not impaired in the ERαKOism mice. Expression of pro-inflammatory genes was altered in the skeletal muscle of the ERαKOism, but the concentrations of these inflammatory markers in the systemic circulation were either lower or remained similar to the WT mice. Finally, skeletal muscle mitochondrial respiratory capacity, oxidative phosphorylation efficiency, and H2O2 emission potential was not affected in the ERαKOism mice. ERαKD in human skeletal muscle cells neither altered differentiation capacity nor caused severe deficits in mitochondrial respiratory capacity. CONCLUSIONS: Collectively, these results suggest that ERα function is superfluous in protecting against HFD-induced skeletal muscle metabolic derangements after postnatal development is complete.


Subject(s)
Estrogen Receptor alpha/metabolism , Insulin/metabolism , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Animals , Estrogen Receptor alpha/deficiency , Female , Humans , Mice , Mice, Knockout , Muscle, Skeletal/cytology
6.
Front Immunol ; 10: 2714, 2019.
Article in English | MEDLINE | ID: mdl-31849940

ABSTRACT

Coal is one of the most abundant and economic sources for global energy production. However, the burning of coal is widely recognized as a significant contributor to atmospheric particulate matter linked to deleterious respiratory impacts. Recently, we have discovered that burning coal generates large quantities of otherwise rare Magnéli phase titanium suboxides from TiO2 minerals naturally present in coal. These nanoscale Magnéli phases are biologically active without photostimulation and toxic to airway epithelial cells in vitro and to zebrafish in vivo. Here, we sought to determine the clinical and physiological impact of pulmonary exposure to Magnéli phases using mice as mammalian model organisms. Mice were exposed to the most frequently found Magnéli phases, Ti6O11, at 100 parts per million (ppm) via intratracheal administration. Local and systemic titanium concentrations, lung pathology, and changes in airway mechanics were assessed. Additional mechanistic studies were conducted with primary bone marrow derived macrophages. Our results indicate that macrophages are the cell type most impacted by exposure to these nanoscale particles. Following phagocytosis, macrophages fail to properly eliminate Magnéli phases, resulting in increased oxidative stress, mitochondrial dysfunction, and ultimately apoptosis. In the lungs, these nanoparticles become concentrated in macrophages, resulting in a feedback loop of reactive oxygen species production, cell death, and the initiation of gene expression profiles consistent with lung injury within 6 weeks of exposure. Chronic exposure and accumulation of Magnéli phases ultimately results in significantly reduced lung function impacting airway resistance, compliance, and elastance. Together, these studies demonstrate that Magnéli phases are toxic in the mammalian airway and are likely a significant nanoscale environmental pollutant, especially in geographic regions where coal combustion is a major contributor to atmospheric particulate matter.


Subject(s)
Environmental Exposure , Lung/drug effects , Lung/pathology , Macrophages/metabolism , Titanium/adverse effects , Animals , Apoptosis/genetics , Apoptosis/immunology , Biomarkers , Cytokines/metabolism , Cytotoxicity, Immunologic , Disease Susceptibility , Gene Expression Profiling , Humans , L-Lactate Dehydrogenase/metabolism , Lung/metabolism , Lung/physiopathology , Macrophages/immunology , Macrophages/pathology , Male , Membrane Potential, Mitochondrial , Mice , Reactive Oxygen Species/metabolism , Respiratory Function Tests , Signal Transduction
7.
J Vis Exp ; (152)2019 10 22.
Article in English | MEDLINE | ID: mdl-31710036

ABSTRACT

Ozone (O3) is a criteria air pollutant that exacerbates and increases the incidence of chronic pulmonary diseases. O3 exposure is known to induce pulmonary inflammation, but little is known regarding how exposure alters processes important to the resolution of inflammation. Efferocytosis is a resolution process, whereby macrophages phagocytize apoptotic cells. The purpose of this protocol is to measure alveolar macrophage efferocytosis following O3-induced lung injury and inflammation. Several methods have been described for measuring efferocytosis; however, most require ex vivo manipulations. Described in detail here is a protocol to measure in vivo alveolar macrophage efferocytosis 24 h after O3 exposure, which avoids ex vivo manipulation of macrophages and serves as a simple technique that can be used to accurately represent perturbations in this resolution process. The protocol is a technically non-intensive and relatively inexpensive method that involves whole-body O3 inhalation followed by oropharyngeal aspiration of apoptotic cells (i.e., Jurkat T cells) while under general anesthesia. Alveolar macrophage efferocytosis is then measured by light microscopy evaluation of macrophages collected from bronchoalveolar (BAL) lavage. Efferocytosis is finally measured by calculating an efferocytic index. Collectively, the outlined methods quantify efferocytic activity in the lung in vivo while also serving to analyze the negative health effects of O3 or other inhaled insults.


Subject(s)
Macrophages, Alveolar/metabolism , Ozone/metabolism , Animals , Bronchoalveolar Lavage Fluid , Humans , In Vitro Techniques , Male , Mice
8.
Toxicol Sci ; 163(2): 466-477, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29471542

ABSTRACT

Exposure to ozone (O3) induces lung injury, pulmonary inflammation, and alters lipid metabolism. During tissue inflammation, specialized pro-resolving lipid mediators (SPMs) facilitate the resolution of inflammation. SPMs regulate the pulmonary immune response during infection and allergic asthma; however, the role of SPMs in O3-induced pulmonary injury and inflammation is unknown. We hypothesize that O3 exposure induces pulmonary inflammation by reducing SPMs. To evaluate this, male C57Bl/6J mice were exposed to filtered air (FA) or 1 ppm O3 for 3 h and necropsied 24 h after exposure. Pulmonary injury/inflammation was determined by bronchoalveolar lavage (BAL) differentials, protein, and lung tissue cytokine expression. SPMs were quantified by liquid chromatography tandem mass spectrometry and SPM receptors leukotriene B4 receptor 1 (BLT-1), formyl peptide receptor 2 (ALX/FPR2), chemokine-like receptor 1 (ChemR23), and SPM-generating enzyme (5-LOX and 12/15-LOX) expression were measured by real time PCR. 24 h post-O3 exposure, BAL PMNs and protein content were significantly increased compared to FA controls. O3-induced lung inflammation was associated with significant decreases in pulmonary SPM precursors (14-HDHA, 17-HDHA), the SPM PDX, and in pulmonary ALX/FPR2, ChemR23, and 12/15-LOX expression. Exogenous administration of 14-HDHA, 17-HDHA, and PDX 1 h prior to O3 exposure rescued pulmonary SPM precursors/SPMs, decreased proinflammatory cytokine and chemokine expression, and decreased BAL macrophages and PMNs. Taken together, these data indicate that O3-mediated SPM reductions may drive O3-induced pulmonary inflammation.


Subject(s)
Leukotrienes/metabolism , Lipid Metabolism/drug effects , Lung/drug effects , Ozone/toxicity , Pneumonia/chemically induced , Prostaglandins/metabolism , Animals , Bronchoalveolar Lavage Fluid/chemistry , Cytokines/genetics , Fatty Acids/analysis , Fatty Acids/metabolism , Gene Expression/drug effects , Lung/immunology , Lung/metabolism , Male , Mice, Inbred C57BL , Pneumonia/metabolism , Pneumonia/pathology
9.
Am J Respir Cell Mol Biol ; 59(2): 257-266, 2018 08.
Article in English | MEDLINE | ID: mdl-29481287

ABSTRACT

Accurate and reproducible assessments of experimental lung injury and inflammation are critical for basic and translational research. In particular, investigators use various methods for BAL and euthanasia; however, the impact of these methods on assessments of injury and inflammation is unknown. To define potential effects, we compared methods of lavage and euthanasia in uninjured mice and after a mild lung injury model (ozone). C57BL/6J male mice (8-10 weeks old) underwent BAL after euthanasia with ketamine/xylazine, carbon dioxide (CO2), or isoflurane. BAL methods included 800 µl of isotonic solution instilled and withdrawn three times, and one or three passive fills and drainage to 20 cm H2O. Parallel experiments were performed 24 hours after 3 hours of ozone (O3) exposure at 2 ppm. BAL total cell counts/differentials and total protein/albumin were determined. Lung histology was evaluated for lung inflammation or injury. BAL cells were cultured and stimulated with PBS, PMA, or LPS for 4 hours and supernatants were evaluated for cytokine content. In uninjured mice, we observed differences due to the lavage and euthanasia methods used. The lavage method increased total cells and total protein/albumin in uninjured and O3-exposed mice, with the 800-µl instillation having the highest values. Isoflurane increased total BAL cells, whereas CO2 euthanasia increased the total protein/albumin levels in uninjured mice. These effects limited our ability to detect differences in BAL injury measures after O3 exposure. In conclusion, the method used for lavage and euthanasia affects measures of lung inflammation/injury and should be considered a variable in model assessments.


Subject(s)
Dose-Response Relationship, Drug , Euthanasia , Inflammation/pathology , Lung Injury/pathology , Animals , Bronchoalveolar Lavage Fluid/cytology , Lung/pathology , Male , Mast Cells/pathology , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...