Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
J Med Chem ; 66(23): 16120-16140, 2023 12 14.
Article in English | MEDLINE | ID: mdl-37988652

ABSTRACT

B3GNT2 is responsible for elongation of cell surface long-chain polylactosamine, which influences the regulation of the immune response, making it an attractive target for immunomodulation. In the development of amide containing B3GNT2 inhibitors guided by structure-based drug design, imidazolones were found to successfully serve as amide bioisosteres. This novel imidazolone isosteric strategy alleviated torsional strain of the amide bond on binding to B3GNT2 and improved potency, isoform selectivity, as well as certain physicochemical and pharmacokinetic properties. Herein, we present the synthesis, SAR, X-ray cocrystal structures, and in vivo PK properties of imidazol-4-ones in the context of B3GNT2 inhibition.


Subject(s)
Amides , N-Acetylglucosaminyltransferases , Amides/pharmacology , Amides/chemistry , N-Acetylglucosaminyltransferases/metabolism , Drug Design , Structure-Activity Relationship
2.
World J Surg ; 45(2): 404-416, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33125506

ABSTRACT

BACKGROUND: Data on the factors that influence mortality after surgery in South Africa are scarce, and neither these data nor data on risk-adjusted in-hospital mortality after surgery are routinely collected. Predictors related to the context or setting of surgical care delivery may also provide insight into variation in practice. Variation must be addressed when planning for improvement of risk-adjusted outcomes. Our objective was to identify the factors predicting in-hospital mortality after surgery in South Africa from available data. METHODS: A multivariable logistic regression model was developed to identify predictors of 30-day in-hospital mortality in surgical patients in South Africa. Data from the South African contribution to the African Surgical Outcomes Study were used and included 3800 cases from 51 hospitals. A forward stepwise regression technique was then employed to select for possible predictors prior to model specification. Model performance was evaluated by assessing calibration and discrimination. The South African Surgical Outcomes Study cohort was used to validate the model. RESULTS: Variables found to predict 30-day in-hospital mortality were age, American Society of Anesthesiologists Physical Status category, urgent or emergent surgery, major surgery, and gastrointestinal-, head and neck-, thoracic- and neurosurgery. The area under the receiver operating curve or c-statistic was 0.859 (95% confidence interval: 0.827-0.892) for the full model. Calibration, as assessed using a calibration plot, was acceptable. Performance was similar in the validation cohort as compared to the derivation cohort. CONCLUSION: The prediction model did not include factors that can explain how the context of care influences post-operative mortality in South Africa. It does, however, provide a basis for reporting risk-adjusted perioperative mortality rate in the future, and identifies the types of surgery to be prioritised in quality improvement projects at a local or national level.


Subject(s)
Delivery of Health Care/standards , Hospital Mortality , Models, Statistical , Surgical Procedures, Operative/mortality , Adult , Clinical Decision Rules , Delivery of Health Care/statistics & numerical data , Female , Healthcare Disparities/statistics & numerical data , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Risk Assessment , Risk Factors , South Africa/epidemiology , Surgical Procedures, Operative/adverse effects , Treatment Outcome
3.
Bioorg Med Chem Lett ; 30(21): 127499, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32858124

ABSTRACT

Agonism of the endothelial receptor APJ (putative receptor protein related to AT1; AT1: angiotensin II receptor type 1) has the potential to ameliorate congestive heart failure by increasing cardiac output without inducing hypertrophy. Although the endogenous agonist, pyr-apelin-13 (1), has shown beneficial APJ-mediated inotropic effects in rats and humans, such effects are short-lived given its extremely short half-life. Here, we report the conjugation of 1 to a fatty acid, providing a lipidated peptide (2) with increased stability that retains inotropic activity in an anesthetized rat myocardial infarction (MI) model. We also report the preparation of a library of 15-mer APJ agonist peptide-lipid conjugates, including adipoyl-γGlu-OEG-OEG-hArg-r-Q-hArg-P-r-NMeLeuSHK-G-Oic-pIPhe-P-DBip-OH (17), a potent APJ agonist with high plasma protein binding and a half-life suitable for once-daily subcutaneous dosing in rats. A correlation between subcutaneous absorption rate and lipid length/type of these conjugates is also reported.


Subject(s)
Apelin Receptors/agonists , Lipids/pharmacology , Myocardial Infarction/drug therapy , Peptides/pharmacology , Animals , Apelin Receptors/metabolism , Dose-Response Relationship, Drug , Injections, Intravenous , Lipids/administration & dosage , Lipids/chemistry , Molecular Structure , Myocardial Infarction/metabolism , Peptides/administration & dosage , Peptides/chemistry , Rats , Structure-Activity Relationship
4.
J Med Chem ; 63(1): 52-65, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31820981

ABSTRACT

KRASG12C has emerged as a promising target in the treatment of solid tumors. Covalent inhibitors targeting the mutant cysteine-12 residue have been shown to disrupt signaling by this long-"undruggable" target; however clinically viable inhibitors have yet to be identified. Here, we report efforts to exploit a cryptic pocket (H95/Y96/Q99) we identified in KRASG12C to identify inhibitors suitable for clinical development. Structure-based design efforts leading to the identification of a novel quinazolinone scaffold are described, along with optimization efforts that overcame a configurational stability issue arising from restricted rotation about an axially chiral biaryl bond. Biopharmaceutical optimization of the resulting leads culminated in the identification of AMG 510, a highly potent, selective, and well-tolerated KRASG12C inhibitor currently in phase I clinical trials (NCT03600883).


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Piperazines/therapeutic use , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Pyridines/therapeutic use , Pyrimidines/therapeutic use , Pyrimidinones/therapeutic use , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Clinical Trials as Topic , Dogs , Drug Discovery , Humans , Isomerism , Madin Darby Canine Kidney Cells , Mice, Inbred BALB C , Mice, Nude , Mutation , Piperazines/chemistry , Piperazines/pharmacology , Proto-Oncogene Proteins p21(ras)/genetics , Pyridines/chemistry , Pyridines/pharmacokinetics , Pyridines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidinones/chemistry , Pyrimidinones/pharmacokinetics , Rats , Structure-Activity Relationship
5.
J Med Chem ; 62(3): 1523-1540, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30624936

ABSTRACT

Pim kinases are a family of constitutively active serine/threonine kinases that are partially redundant and regulate multiple pathways important for cell growth and survival. In human disease, high expression of the three Pim isoforms has been implicated in the progression of hematopoietic and solid tumor cancers, which suggests that Pim kinase inhibitors could provide patients with therapeutic benefit. Herein, we describe the structure-guided optimization of a series of quinazolinone-pyrrolodihydropyrrolone analogs leading to the identification of potent pan-Pim inhibitor 28 with improved potency, solubility, and drug-like properties. Compound 28 demonstrated on-target Pim activity in an in vivo pharmacodynamic assay with significant inhibition of BAD phosphorylation in KMS-12-BM multiple myeloma tumors for 16 h postdose. In a 2-week mouse xenograft model, daily dosing of compound 28 resulted in 33% tumor regression at 100 mg/kg.


Subject(s)
Antineoplastic Agents/therapeutic use , Hematologic Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Pyrroles/therapeutic use , Quinazolinones/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Female , Humans , Mice, SCID , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Pyrroles/chemical synthesis , Pyrroles/pharmacokinetics , Quinazolinones/chemical synthesis , Quinazolinones/pharmacokinetics , Structure-Activity Relationship , Swine , Xenograft Model Antitumor Assays
7.
J Med Chem ; 59(13): 6407-30, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27285051

ABSTRACT

The high expression of proviral insertion site of Moloney murine leukemia virus kinases (Pim-1, -2, and -3) in cancers, particularly the hematopoietic malignancies, is believed to play a role in promoting cell survival and proliferation while suppressing apoptosis. The three isoforms of Pim protein appear largely redundant in their oncogenic functions. Thus, a pan-Pim kinase inhibitor is highly desirable. However, cell active pan-Pim inhibitors have proven difficult to develop because Pim-2 has a low Km for ATP and therefore requires a very potent inhibitor to effectively block the kinase activity at cellular ATP concentrations. Herein, we report a series of quinazolinone-pyrrolopyrrolones as potent and selective pan-Pim inhibitors. In particular, compound 17 is orally efficacious in a mouse xenograft model (KMS-12 BM) of multiple myeloma, with 93% tumor growth inhibition at 50 mg/kg QD upon oral dosing.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Pyrroles/pharmacology , Quinazolinones/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Mice , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-pim-1/metabolism , Pyrroles/administration & dosage , Pyrroles/chemistry , Quinazolinones/administration & dosage , Quinazolinones/chemistry , Structure-Activity Relationship , Xenograft Model Antitumor Assays
8.
S Afr Med J ; 106(5): 58-9, 2016 Mar 31.
Article in English | MEDLINE | ID: mdl-27138668

ABSTRACT

BACKGROUND: Perioperative research is currently unco-ordinated in South Africa (SA), with no clear research agenda. OBJECTIVE: To determine the top ten national research priorities for perioperative research in SA. METHODS: A Delphi technique was used to establish consensus on the top ten research priorities. RESULTS: The top ten research priorities were as follows: (i) establishment of a national database of (a) critical care outcomes, and (b) critical care resources; (ii) a randomised controlled trial of preoperative B-type natriuretic peptide-guided medical therapy to decrease major adverse cardiac events following non-cardiac surgery; (iii) a national prospective observational study of the outcomes associated with paediatric surgical cases; (iv) a national observational study of maternal and fetal outcomes following operative delivery in SA; (v) a stepped-wedge trial of an enhanced recovery after surgery programme for (a) surgery, (b) obstetrics, (c) emergency surgery, and (d) trauma surgery; (vi) a stepped-wedge trial of a surgical safety checklist on patient outcomes in SA; (vii) a prospective observational study of perioperative outcomes after surgery in district general hospitals in SA; (viii) short-course interventions to improve anaesthetic skills in rural doctors; (ix) studies of the efficacy of simulation training to improve (a) patient outcomes, (b) team dynamics, and (c) leadership; and (x) development and validation of a risk stratification tool for SA surgery based on the South African Surgical Outcomes Study (SASOS) data. CONCLUSIONS: These research priorities provide the structure for an intermediate-term research agenda.

9.
ACS Med Chem Lett ; 7(4): 408-12, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27096050

ABSTRACT

The identification of Pim-1/2 kinase overexpression in B-cell malignancies suggests that Pim kinase inhibitors will have utility in the treatment of lymphoma, leukemia, and multiple myeloma. Starting from a moderately potent quinoxaline-dihydropyrrolopiperidinone lead, we recognized the potential for macrocyclization and developed a series of 13-membered macrocycles. The structure-activity relationships of the macrocyclic linker were systematically explored, leading to the identification of 9c as a potent, subnanomolar inhibitor of Pim-1 and -2. This molecule also potently inhibited Pim kinase activity in KMS-12-BM, a multiple myeloma cell line with relatively high endogenous levels of Pim-1/2, both in vitro (pBAD IC50 = 25 nM) and in vivo (pBAD EC50 = 30 nM, unbound), and a 100 mg/kg daily dose was found to completely arrest the growth of KMS-12-BM xenografts in mice.

10.
Bioorg Med Chem Lett ; 25(23): 5604-8, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26522948

ABSTRACT

Potent ligands for the human complement C3a receptor (C3aR) were developed from the almost inactive tripeptide Leu-Ala-Arg corresponding to the three C-terminal residues of the endogenous peptide agonist C3a. The analogous Leu-Ser-Arg was modified by condensing the serine side chain with the leucine carbonyl with elimination of water to form leucine-oxazole-arginine. Subsequent elaboration with a variety of N-terminal amide capping groups produced agonists as potent as human C3a itself in stimulating Ca(2+) release from human macrophages. Structure-activity relationships are discussed.


Subject(s)
Amino Acids/chemical synthesis , Oxazoles/chemical synthesis , Receptors, Complement/agonists , Amino Acids/chemistry , Amino Acids/pharmacology , Arginine/analogs & derivatives , Arginine/chemistry , Arginine/pharmacology , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/pharmacology , Dipeptides/chemistry , Dipeptides/pharmacology , Dose-Response Relationship, Drug , Humans , Ligands , Macrophages/drug effects , Molecular Structure , Oxazoles/chemistry , Oxazoles/pharmacology , Structure-Activity Relationship
13.
Bioorg Med Chem Lett ; 25(4): 847-55, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25599837

ABSTRACT

High levels of Pim expression have been implicated in several hematopoietic and solid tumor cancers. These findings suggest that inhibition of Pim signaling by a small molecule Pim-1,2 inhibitor could provide patients with therapeutic benefit. Herein, we describe our progress towards this goal starting from the highly Pim-selective indole-thiadiazole compound (1), which was derived from a nonselective hit identified in a high throughput screening campaign. Optimization of this compound's potency and its pharmacokinetic properties resulted in the discovery of compound 29. Cyclopropane 29 was found to exhibit excellent enzymatic potency on the Pim-1 and Pim-2 isoforms (Ki values of 0.55nM and 0.28nM, respectively), and found to inhibit the phosphorylation of BAD in the Pim-overexpressing KMS-12 cell line (IC50=150nM). This compound had moderate clearance and bioavailability in rat (CL=2.42L/kg/h; %F=24) and exhibited a dose-dependent inhibition of p-BAD in KMS-12 tumor pharmacodynamic (PD) model with an EC50 value of 6.74µM (18µg/mL) when dosed at 10, 30, 100 and 200mg/kg po in mice.


Subject(s)
Oxadiazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Crystallography, X-Ray , Drug Discovery , Molecular Structure , Oxadiazoles/chemistry
14.
Bioorg Med Chem Lett ; 25(4): 834-40, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25597005

ABSTRACT

The three Pim kinases are a small family of serine/threonine kinases regulating several signaling pathways that are fundamental to tumorigenesis. As such, the Pim kinases are a very attractive target for pharmacological inhibition in cancer therapy. Herein, we describe our efforts toward the development of a potent, pan-Pim inhibitor. The synthesis and hit-to-lead SAR development from a 3-(pyrazin-2-yl)-1H-indazole derived hit 2 to the identification of a series of potent, pan-Pim inhibitors such as 13o are described.


Subject(s)
Indazoles/chemistry , Indazoles/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Drug Discovery , Humans , Structure-Activity Relationship
15.
Bioorg Med Chem Lett ; 24(24): 5630-5634, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25466188

ABSTRACT

Replacement of the piperazine sulfonamide portion of the PI3Kα inhibitor AMG 511 (1) with a range of aliphatic alcohols led to the identification of a truncated gem-dimethylbenzylic alcohol analog, 2-(5-(4-amino-6-methyl-1,3,5-triazin-2-yl)-6-((5-fluoro-6-methoxypyridin-3-yl)amino)pyridin-3-yl)propan-2-ol (7). This compound possessed good in vitro efficacy and pharmacokinetic parameters and demonstrated an EC50 of 239 ng/mL in a mouse liver pharmacodynamic model measuring the inhibition of hepatocyte growth factor (HGF)-induced Akt Ser473 phosphorylation in CD1 nude mice 6 h post-oral dosing.


Subject(s)
Alcohols/chemistry , Phosphoinositide-3 Kinase Inhibitors , Piperazines/chemistry , Protein Kinase Inhibitors/chemistry , Pyridines/chemical synthesis , Sulfonamides/chemistry , Triazines/chemical synthesis , Animals , Female , Half-Life , Liver/metabolism , Male , Mice , Mice, Nude , Molecular Conformation , Phosphatidylinositol 3-Kinases/metabolism , Piperazine , Piperazines/metabolism , Piperazines/pharmacokinetics , Protein Binding , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Pyridines/metabolism , Pyridines/pharmacokinetics , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Structure-Activity Relationship , Sulfonamides/metabolism , Sulfonamides/pharmacokinetics , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Triazines/metabolism , Triazines/pharmacokinetics
16.
Nat Commun ; 4: 2802, 2013.
Article in English | MEDLINE | ID: mdl-24257095

ABSTRACT

A significant challenge in chemistry is to rationally reproduce the functional potency of a protein in a small molecule, which is cheaper to manufacture, non-immunogenic, and also both stable and bioavailable. Synthetic peptides corresponding to small bioactive protein surfaces do not form stable structures in water and do not exhibit the functional potencies of proteins. Here we describe a novel approach to growing small molecules with protein-like potencies from a functionally important amino acid of a protein. A 77-residue human inflammatory protein (complement C3a) important in innate immunity is rationally transformed to equipotent small molecules, using peptide surrogates that incorporate a turn-inducing heterocycle with correctly positioned hydrogen-bond-accepting atoms. Small molecule agonists (molecular weight <500 Da) examined for receptor affinity and cellular responses have the same high potencies, functional profile and specificity of action as C3a protein, but greater plasma stability and bioavailability.


Subject(s)
Complement C3a/chemistry , Complement C3a/physiology , Inflammation Mediators/chemistry , Inflammation Mediators/physiology , Receptors, Complement/agonists , Complement C3a/metabolism , Humans , Inflammation Mediators/metabolism , Structure-Activity Relationship
17.
J Med Chem ; 55(17): 7796-816, 2012 Sep 13.
Article in English | MEDLINE | ID: mdl-22897589

ABSTRACT

The phosphoinositide 3-kinase family catalyzes the phosphorylation of phosphatidylinositol-4,5-diphosphate to phosphatidylinositol-3,4,5-triphosphate, a secondary messenger which plays a critical role in important cellular functions such as metabolism, cell growth, and cell survival. Our efforts to identify potent, efficacious, and orally available phosphatidylinositol 3-kinase (PI3K) inhibitors as potential cancer therapeutics have resulted in the discovery of 4-(2-((6-methoxypyridin-3-yl)amino)-5-((4-(methylsulfonyl)piperazin-1-yl)methyl)pyridin-3-yl)-6-methyl-1,3,5-triazin-2-amine (1). In this paper, we describe the optimization of compound 1, which led to the design and synthesis of pyridyltriazine 31, a potent pan inhibitor of class I PI3Ks with a superior pharmacokinetic profile. Compound 31 was shown to potently block the targeted PI3K pathway in a mouse liver pharmacodynamic model and inhibit tumor growth in a U87 malignant glioma glioblastoma xenograft model. On the basis of its excellent in vivo efficacy and pharmacokinetic profile, compound 31 was selected for further evaluation as a clinical candidate and was designated AMG 511.


Subject(s)
Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Triazines/pharmacology , Crystallography, X-Ray , Models, Molecular , Protein Kinase Inhibitors/chemistry
18.
S Afr Med J ; 102(6): 415-8, 2012 Mar 23.
Article in English | MEDLINE | ID: mdl-22668923

ABSTRACT

From humble beginnings, the University of Cape Town's Department of Anaesthesia has played a major role in the development of anaesthesia as a speciality, in South Africa and internationally. We highlight these contributions in clinical service, teaching and research, with particular emphasis on the department's leading role in the evolution of anaesthetic safety in adults and children: from the development of the treatment of malignant hyperthermia, to unique studies in mortality associated with anaesthesia, and modern contributions to improved drug safety. Innovations in anaesthetic techniques have contributed to significant surgical developments, including the first heart transplant. Furthermore, our research has contributed to major advances in obstetric and endocrine anaesthesia, and training in the department is recognised as being among the best in the world.


Subject(s)
Anesthesia/history , Schools, Medical/history , Universities/history , Anesthesiology/education , History, 20th Century , History, 21st Century , Humans , South Africa
19.
J Med Chem ; 55(11): 5188-219, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22548365

ABSTRACT

A highly selective series of inhibitors of the class I phosphatidylinositol 3-kinases (PI3Ks) has been designed and synthesized. Starting from the dual PI3K/mTOR inhibitor 5, a structure-based approach was used to improve potency and selectivity, resulting in the identification of 54 as a potent inhibitor of the class I PI3Ks with excellent selectivity over mTOR, related phosphatidylinositol kinases, and a broad panel of protein kinases. Compound 54 demonstrated a robust PD-PK relationship inhibiting the PI3K/Akt pathway in vivo in a mouse model, and it potently inhibited tumor growth in a U-87 MG xenograft model with an activated PI3K/Akt pathway.


Subject(s)
Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors , Piperazines/chemical synthesis , Pyridines/chemical synthesis , Sulfonamides/chemical synthesis , Triazines/chemical synthesis , Animals , Biological Availability , Class I Phosphatidylinositol 3-Kinases/physiology , Crystallography, X-Ray , Drug Design , Female , Humans , Indazoles/chemical synthesis , Indazoles/pharmacokinetics , Indazoles/pharmacology , Mice , Mice, Nude , Microsomes, Liver/metabolism , Models, Molecular , Piperazines/pharmacokinetics , Piperazines/pharmacology , Proto-Oncogene Proteins c-akt/physiology , Purines/chemical synthesis , Purines/pharmacokinetics , Purines/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Pyridines/pharmacokinetics , Pyridines/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Rats , Signal Transduction , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Sulfones/chemical synthesis , Sulfones/pharmacokinetics , Sulfones/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Triazines/pharmacokinetics , Triazines/pharmacology , Xenograft Model Antitumor Assays
20.
Bioorg Med Chem Lett ; 22(4): 1779-83, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22257889

ABSTRACT

Replacement of the azetidine carboxylate of an S1P(1) agonist development candidate, AMG 369, with a range of acyclic head-groups led to the identification of a novel, S1P(3)-sparing S1P(1) agonist, (-)-2-amino-4-(3-fluoro-4-(5-(1-phenylcyclopropyl)thiazolo[5,4-b]pyridin-2-yl)phenyl)-2-methylbutanoic acid (8c), which possessed good in vivo efficacy and pharmacokinetic properties. A 0.3mg/kg oral dose of 8c produced a statistically significant reduction in blood lymphocyte counts 24h post-dosing in female Lewis rats.


Subject(s)
Amines/chemistry , Carboxylic Acids/chemistry , Protein Isoforms/chemistry , Pyridines/chemistry , Pyridines/chemical synthesis , Pyridines/pharmacology , Receptors, Lysosphingolipid/agonists , Thiazoles/chemistry , Administration, Oral , Animals , Cyclization , Female , Inhibitory Concentration 50 , Molecular Structure , Protein Binding/drug effects , Rats , Rats, Inbred Lew , Thiazoles/chemical synthesis , Thiazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...