Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Type of study
Publication year range
1.
Zookeys ; 1156: 33-52, 2023.
Article in English | MEDLINE | ID: mdl-37234790

ABSTRACT

Nitidulidae trapping performed from 2018 to 2021 to characterize flight behaviors of potential vectors of the oak wilt pathogen yielded three new species records for Canada, six new species records for Ontario, and three new species records for Manitoba. The new records for Canada include Carpophilus (Ecnomorphus) corticinus reported from Ontario, C. (Myothorax) nepos reported from Ontario and Manitoba, and Glischrochilus (Librodor) obtusus reported from Ontario. In addition, the following species are first recorded in Ontario: Carpophilus (Ecnomorphus) antiquus, C. (Megacarpolus) sayi, Stelidotacoenosa; and also in Manitoba: Carpophilus (Megacarpolus) lugubris and Cychramusadustus. Collection data is provided for the two provinces and national records.

2.
Plant Dis ; 103(1): 102-109, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30398946

ABSTRACT

Widespread decline and mortality of white oaks (Quercus alba) occurred in Missouri Ozark forests between 2011 and 2017. Symptoms included rapid crown death with bronzing of leaves, retention of dead leaves, crown dieback and thinning, and loss of large limbs within one year of death. Decline and mortality were associated with hillside drainages and fit descriptions of European oak forests predisposed to decline by pathogenic Phytophthora species. A survey was performed at two locations in 2014 and 2015 to assess the distribution of dead and declining white oaks, and the occurrence and distribution of Phytophthora species. Multiple Phytophthora species were detected, including P. cinnamomi, P. cactorum, P. europaea, and P. pini. P. cinnamomi was the most common and widely distributed species among plots at both locations. The detection of P. cinnamomi at the base of white oaks was not associated with poor crown vigor. However, more quantitative survey techniques are necessary to clearly evaluate this relationship. P. cinnamomi kills fine roots of white and red oaks in North America and has been associated with the decline of white oaks in the United States (Ohio) and other countries. Further studies are needed to determine the importance of P. cinnamomi in oak decline within the Ozark highlands.


Subject(s)
Phytophthora , Quercus , Forests , Missouri , North America , Ohio
3.
Fungal Biol ; 119(11): 1075-1092, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26466881

ABSTRACT

The genus Ambrosiella accommodates species of Ceratocystidaceae (Microascales) that are obligate, mutualistic symbionts of ambrosia beetles, but the genus appears to be polyphyletic and more diverse than previously recognized. In addition to Ambrosiella xylebori, Ambrosiella hartigii, Ambrosiella beaveri, and Ambrosiella roeperi, three new species of Ambrosiella are described from the ambrosia beetle tribe Xyleborini: Ambrosiella nakashimae sp. nov. from Xylosandrus amputatus, Ambrosiella batrae sp. nov. from Anisandrus sayi, and Ambrosiella grosmanniae sp. nov. from Xylosandrus germanus. The genus Meredithiella gen. nov. is created for symbionts of the tribe Corthylini, based on Meredithiella norrisii sp. nov. from Corthylus punctatissimus. The genus Phialophoropsis is resurrected to accommodate associates of the Xyloterini, including Phialophoropsis trypodendri from Trypodendron scabricollis and Phialophoropsis ferruginea comb. nov. from Trypodendron lineatum. Each of the ten named species was distinguished by ITS rDNA barcoding and morphology, and the ITS rDNA sequences of four other putative species were obtained with Ceratocystidaceae-specific primers and template DNA extracted from beetles or galleries. These results support the hypothesis that each ambrosia beetle species with large, complex mycangia carries its own fungal symbiont. Conidiophore morphology and phylogenetic analyses using 18S (SSU) rDNA and TEF1α DNA sequences suggest that these three fungal genera within the Ceratocystidaceae independently adapted to symbiosis with the three respective beetle tribes. In turn, the beetle genera with large, complex mycangia appear to have evolved from other genera in their respective tribes that have smaller, less selective mycangia and are associated with Raffaelea spp. (Ophiostomatales).


Subject(s)
Ascomycota/isolation & purification , Ascomycota/physiology , Genetic Variation , Symbiosis , Weevils/microbiology , Ambrosia/parasitology , Animals , Ascomycota/classification , Ascomycota/genetics , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Molecular Sequence Data , Peptide Elongation Factor 1/genetics , Phylogeny , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
4.
Environ Entomol ; 44(6): 1455-64, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26314028

ABSTRACT

Thousand cankers disease (TCD) is a new disease of black walnut (Juglans nigra L.) in the eastern United States. The disease is caused by the interaction of the aggressive bark beetle Pityophthorus juglandis Blackman and the canker-forming fungus, Geosmithia morbida M. Kolarik, E. Freeland, C. Utley & Tisserat, carried by the beetle. Other insects also colonize TCD-symptomatic trees and may also carry pathogens. A trap tree survey was conducted in Indiana and Missouri to characterize the assemblage of ambrosia beetles, bark beetles, and other weevils attracted to the main stems and crowns of stressed black walnut. More than 100 trees were girdled and treated with glyphosate (Riverdale Razor Pro, Burr Ridge, Illinois) at 27 locations. Nearly 17,000 insects were collected from logs harvested from girdled walnut trees. These insects represented 15 ambrosia beetle, four bark beetle, and seven other weevil species. The most abundant species included Xyleborinus saxeseni Ratzburg, Xylosandrus crassiusculus Motschulsky, Xylosandrus germanus Blandford, Xyleborus affinis Eichhoff, and Stenomimus pallidus Boheman. These species differed in their association with the stems or crowns of stressed trees. Multiple species of insects were collected from individual trees and likely colonized tissues near each other. At least three of the abundant species found (S. pallidus, X. crassiusculus, and X. germanus) are known to carry propagules of canker-causing fungi of black walnut. In summary, a large number of ambrosia beetles, bark beetles, and other weevils are attracted to stressed walnut trees in Indiana and Missouri. Several of these species have the potential to introduce walnut canker pathogens during colonization.


Subject(s)
Insect Vectors , Juglans/physiology , Stress, Physiological , Weevils , Animals , Glycine/analogs & derivatives , Hypocreales , Indiana , Juglans/microbiology , Missouri , Plant Diseases/microbiology , Glyphosate
5.
Mycologia ; 106(4): 835-45, 2014.
Article in English | MEDLINE | ID: mdl-24895423

ABSTRACT

Isolations from the granulate ambrosia beetle, Xylosandrus crassiusculus (Coleoptera: Curculionidae: Scolytinae: Xyleborini), collected in Georgia, South Carolina, Missouri and Ohio, yielded an undescribed species of Ambrosiella in thousands of colony-forming units (CFU) per individual female. Partial sequences of ITS and 28S rDNA regions distinguished this species from other Ambrosiella spp., which are asexual symbionts of ambrosia beetles and closely related to Ceratocystis spp. Ambrosiella roeperi sp. nov. produces sporodochia of branching conidiophores with disarticulating swollen cells, and the branches are terminated by thick-walled aleurioconidia, similar to the conidiophores and aleurioconidia of A. xylebori, which is the mycangial symbiont of a related ambrosia beetle, X. compactus. Microscopic examinations found homogeneous masses of arthrospore-like cells growing in the mycangium of X. crassiusculus, without evidence of other microbial growth. Using fungal-specific primers, only the ITS rDNA region of A. roeperi was amplified and sequenced from DNA extractions of mycangial contents, suggesting that it is the primary or only mycangial symbiont of this beetle in USA.


Subject(s)
Ascomycota/classification , Coleoptera/microbiology , Animals , Ascomycota/cytology , Ascomycota/genetics , Ascomycota/isolation & purification , Base Sequence , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Female , Georgia , Missouri , Molecular Sequence Data , Mycological Typing Techniques , Ohio , Sequence Analysis, DNA , South Carolina , Species Specificity , Symbiosis
6.
Environ Entomol ; 39(5): 1482-91, 2010 Oct.
Article in English | MEDLINE | ID: mdl-22546443

ABSTRACT

Economic and biological consequences are associated with exotic ambrosia beetles and their fungal associates. Despite this, knowledge of ambrosia beetles and their ecological interactions remain poorly understood, especially in the oak-hickory forest region. We examined how forest stand and site characteristics influenced ambrosia beetle habitat use as evaluated by species richness and abundance of ambrosia beetles, both the native component and individual exotic species. We documented the species composition of the ambrosia beetle community, flight activity, and habitat use over a 2-yr period by placing flight traps in regenerating clearcuts and older oak-hickory forest stands differing in topographic aspect. The ambrosia beetle community consisted of 20 species with exotic ambrosia beetle species dominating the community. Similar percentages of exotic ambrosia beetles occurred among the four forest habitats despite differences in stand age and aspect. Stand characteristics, such as stand age and forest structure, influenced ambrosia beetle richness and the abundances of a few exotic ambrosia beetle species and the native ambrosia beetle component. Topographic aspect had little influence on ambrosia beetle abundance or species richness. Older forests typically have more host material than younger forests and our results may be related to the amount of dead wood present. Different forms of forest management may not alter the percent contribution of exotic ambrosia beetles to the ambrosia beetle community.


Subject(s)
Ecosystem , Weevils/classification , Weevils/physiology , Animals , Biota , Insect Control , Missouri , Population Dynamics , Trees
7.
Ecology ; 88(11): 2903-14, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18051659

ABSTRACT

Most plant diversity-function studies have been conducted in terrestrial ecosystems and have focused on plant productivity and nutrient uptake/retention, with a notable lack of attention paid to belowground processes (e.g., root dynamics, decomposition, trace gas fluxes). Here we present results from a mesocosm experiment in which we assessed how the richness of emergent macrophyte functional groups influences aboveground and belowground plant growth and microbial-mediated functions related to carbon and nitrogen cycling, with an emphasis on methane (CH4) efflux and potential denitrification rates. We found that an increase in the richness of wetland plant functional groups enhanced belowground plant biomass, altered rooting patterns, and decreased methane efflux, while having no effect on aboveground plant production or denitrification potential. We hypothesize that the greater root production and increased rooting depth in the highest diversity treatments enhanced CH4 oxidation to a relatively greater degree than methane production, leading to an overall decrease in CH4 efflux across our plant functional group richness gradient.


Subject(s)
Biodiversity , Biomass , Ecosystem , Methane/metabolism , Plant Roots/physiology , Carbon/metabolism , Fresh Water , Nitrogen/metabolism , Plant Physiological Phenomena , Plant Roots/metabolism , Poaceae/metabolism , Poaceae/physiology , Population Dynamics , Species Specificity
8.
J Virol Methods ; 138(1-2): 85-98, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16950522

ABSTRACT

We have developed a simple protocol to transfect mammalian cells using linear polyethylenimine (PEI). Our linear PEI protocol is as effective as commercial reagents in the transfection of HeLa cells and XDC293 cells, a derivative of HEK293 cells, but at a fraction of the cost. Greater than 90% of XDC293 cells and 98% of HeLa cells transfected using our method were positive for EGFP expression as determined by flow cytometery. Our protocol should be useful for many different applications such as large-scale production of recombinant protein and viruses, which requires transient transfection of mammalian cells in large batches. We have used this protocol to produce recombinant adeno-associated virus (AAV) in XDC293 cells and in HeLa cells. This requires transient expression of three adenovirus gene-products (E2A, E4orf6, and VA RNAs) as well as the AAV replication (Rep78, Rep68, Rep52, and Rep40) and capsid (VP1, VP2, and VP3) proteins. Production of a recombinant AAV that expresses green fluorescent protein was assessed by quantitative PCR and by transduction of HeLa cells. Linear PEI is a better transfection reagent than calcium phosphate for the production of recombinant AAV in both HEK293 and HeLa cells. In addition, when both HeLa and XDC293 cells were by our method, HeLa cells in the absence of E1A generated three-fold more recombinant AAV than XDC293 cells, which constitutively express E1A.


Subject(s)
Dependovirus/genetics , Genetic Vectors , Polyethyleneimine , Recombination, Genetic , Transfection/methods , Cell Line , DNA, Viral/analysis , Flow Cytometry , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , Humans , Polymerase Chain Reaction
9.
J Virol Methods ; 137(2): 193-204, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16860883

ABSTRACT

Recombinant AAV vectors are produced by transient transfection of mammalian cells. The virus is usually purified from a combination of lysed cells and spent culture medium by HPLC. We have developed a quantitative, real-time PCR assay for quantifying encapsidated single-stranded viral DNA (i.e. DNA-containing virions) in cell lysates and the spent culture medium. This requires extensive DNaseI digestion to reduce the amount of AAV replicative DNA, as well as plasmid and cellular DNA, to negligible amounts. To demonstrate the utility of this assay, we produced recombinant AAV in HeLa cells and five different types of 293 cells. We used primers to the EGFP transgene to detect the production of a recombinant AAV. We assayed the cell lysates and media by both our quantitative PCR assay and a functional transduction assay. The quantitative PCR assay data correlated well with the transduction assay data. Because this assay only requires standard PCR primers and SYBR Green I dye to detect the amplification of the PCR template, it will readily adapt to any target DNA sequence within the recombinant AAV genome. The recombinant AAV vector does not need to express a reporter gene, such as EGFP or beta-galactosidase in order to assay the amount of virus produced.


Subject(s)
DNA, Viral/analysis , Dependovirus/genetics , Dependovirus/isolation & purification , Genetic Vectors , Polymerase Chain Reaction/methods , Virion/isolation & purification , Benzothiazoles , Cell Line , Culture Media , DNA/metabolism , DNA, Viral/metabolism , Deoxyribonuclease I/metabolism , Dependovirus/growth & development , Diamines , Genes, Reporter , Green Fluorescent Proteins/genetics , Humans , Organic Chemicals/metabolism , Quinolines , Recombination, Genetic , Staining and Labeling , Statistics as Topic , Transduction, Genetic , Virology/methods
10.
J Virol Methods ; 129(1): 91-6, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16005085

ABSTRACT

The maize-infecting nucleorhabdovirus, Maize mosaic virus (MMV), was sequenced to near completion using the random shotgun approach. Sequences of 102 clones from a cDNA library constructed from randomly-primed viral RNA were compiled into a 12,133 nucleotide (nt) contig containing six open reading frames. The contig consisted of 97 sequences averaging 660 bp in length. The average sequence coverage was six-fold, and 93% of the contig had sequence reads covering both strands. The remaining sequence was derived from single (5%) or multiple (2%) reads on the same strand. Three of the six ORFs showed significant similarities to the deduced protein sequences of the nucleocapsid, glycoprotein and polymerase sequences of other rhabdoviruses. The predicted gene order of the MMV genome was 3'-N-P-3-M-G-L-5'. Shotgun sequencing of the MMV genome took approximately 127 h and cost 0.38 dollars per nt (including labor), whereas the primer walking approach for sequencing the 13,782-nt MFSV genome [Tsai, C.-W., Redinbaugh, M.G., Willie, K.J., Reed, S., Goodin, M., Hogenhout, S. A., 2005. Complete genome sequence and in planta subcellular localization of maize fine streak virus proteins. J. Virol. 79, 5304-5314] took about 217 h and cost 0.50 dollars per nt. Thus, the shotgun approach gave good depth of coverage for the viral genome sequence while being significantly faster and less expensive than the primer walking method. This technique will facilitate the sequencing of multiple rhabdovirus genomes.


Subject(s)
Genome, Viral , RNA, Viral/analysis , Rhabdoviridae/genetics , DNA-Directed RNA Polymerases/genetics , Open Reading Frames , Rhabdoviridae/isolation & purification , Sequence Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...