Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 87(21): e0029921, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34647819

ABSTRACT

Escherichia coli is a Gram-negative bacterium that is a workhorse for biotechnology. The organism naturally performs a mixed-acid fermentation under anaerobic conditions where it synthesizes formate hydrogenlyase (FHL-1). The physiological role of the enzyme is the disproportionation of formate into H2 and CO2. However, the enzyme has been observed to catalyze hydrogenation of CO2 given the correct conditions, and so it has possibilities in bio-based carbon capture and storage if it can be harnessed as a hydrogen-dependent CO2 reductase (HDCR). In this study, an E. coli host strain was engineered for the continuous production of formic acid from H2 and CO2 during bacterial growth in a pressurized batch bioreactor. Incorporation of tungsten, in place of molybdenum, in FHL-1 helped to impose a degree of catalytic bias on the enzyme. This work demonstrates that it is possible to couple cell growth to simultaneous, unidirectional formate production from carbon dioxide and develops a process for growth under pressurized gases. IMPORTANCE Greenhouse gas emissions, including waste carbon dioxide, are contributing to global climate change. A basket of solutions is needed to steadily reduce emissions, and one approach is bio-based carbon capture and storage. Here, we present our latest work on harnessing a novel biological solution for carbon capture. The Escherichia coli formate hydrogenlyase (FHL-1) was engineered to be constitutively expressed. Anaerobic growth under pressurized H2 and CO2 gases was established, and aqueous formic acid was produced as a result. Incorporation of tungsten into the enzyme in place of molybdenum proved useful in poising FHL-1 as a hydrogen-dependent CO2 reductase (HDCR).


Subject(s)
Escherichia coli , Formate Dehydrogenases , Formates/metabolism , Bioreactors , Carbon Dioxide , Deuterium , Escherichia coli/genetics , Formate Dehydrogenases/genetics , Gases , Molybdenum , Tungsten
SELECTION OF CITATIONS
SEARCH DETAIL
...