Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Am Nat ; 201(6): 779-793, 2023 06.
Article in English | MEDLINE | ID: mdl-37229706

ABSTRACT

AbstractCrow's "opportunity for selection" (I=variance in relative fitness) is an important albeit controversial eco-evolutionary concept, particularly regarding the most appropriate null model(s). Here, we treat this topic in a comprehensive way by considering opportunities for both fertility selection (If) and viability selection (Im) for discrete generations, both seasonal and lifetime reproductive success in age-structured species, and experimental designs that include either a full or partial life cycle, with complete enumeration or random subsampling. For each scenario, a null model that includes random demographic stochasticity can be constructed that follows Crow's initial formulation that I=If+Im. The two components of I are qualitatively different. Whereas an adjusted If (ΔIf) can be computed that accounts for random demographic stochasticity in offspring number, Im cannot be similarly adjusted in the absence of data on phenotypic traits under viability selection. Including as potential parents some individuals that die before reproductive age produces an overall zero-inflated Poisson null model. It is always important to remember that (1) Crow's I represents only the opportunity for selection and not selection itself and (2) the species' biology can lead to random stochasticity in offspring number that is either overdispersed or underdispersed compared with the Poisson (Wright-Fisher) expectation.


Subject(s)
Reproduction , Selection, Genetic , Humans , Fertility , Biological Evolution , Phenotype
2.
J Fish Biol ; 102(6): 1327-1339, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36911993

ABSTRACT

Genetic identity analysis and PIT (passive integrated transponder) tagging were used to examine the freshwater return rates and phenotypic characteristics of n = 1791 downstream migrating juvenile Salmo trutta in the Burrishoole catchment (northwest Ireland) across the period September 2017 to December 2020. In this system, juveniles out-migrate (move from freshwater into brackish or marine habitats) in every month of the year, with distinct seasonal peaks in spring (March through June; mostly silvered smolts) and autumn (September through December; mostly younger, unsilvered fry or parr). Both types exhibited a sex-bias towards females, which was stronger in spring (78% females) than in autumn outmigrants (67%). Sixty-nine returning fish were matched back to previous juvenile outmigrants, and similar return rates were found for spring outmigrants (5.0%), autumn outmigrants (3.3%) and fish that out-migrated outside of spring or autumn (2.8%). Spring and autumn outmigrants returned at similar dates (typically mid to late July), but autumn fish were away for longer periods (median = 612 days; spring outmigrants = 104 days). Autumn outmigrants were 25% smaller than spring outmigrants at outmigration and 6% smaller on their return, and within both groups smaller/younger outmigrants spent longer away than larger/older outmigrants. Autumn outmigrants were more likely to return unsilvered as "slob" trout (84%) than spring outmigrants (31%), suggesting they make greater use of brackish habitats that might be safer, but less productive, than fully marine habitats. Nonetheless, both types also produced silvered "sea trout" (≥1+ sea-age), implying neither is locked into a single life-history strategy. The findings emphasise that autumn outmigrants and the transitional habitats that support their persistence should not be overlooked in salmonid management and conservation.


Subject(s)
Animal Migration , Fresh Water , Female , Animals , Male , Seasons , Trout , Demography
3.
J Anim Ecol ; 92(1): 7-15, 2023 01.
Article in English | MEDLINE | ID: mdl-36366942

ABSTRACT

Natural selection can only occur if individuals differ in fitness. For this reason, the variance in relative fitness has been equated with the 'opportunity for selection' ( I ), which has a long, albeit somewhat controversial, history. In this paper we discuss the use/misuse of I and related metrics in evolutionary ecology. The opportunity is only realised if some fraction of I is caused by trait variation. Thus, I > 0 does not imply that selection is occurring, as sometimes erroneously assumed, because all fitness variation could be independent of phenotype. The selection intensity on any given trait cannot exceed I , but this upper limit will never be reached because (a) stochastic factors always affect fitness, and (b) there might be multiple traits under selection. The expected magnitude of the stochastic component of I is negatively correlated with mean fitness. Uncertainty in realised I is also larger when mean fitness or population/sample size are low. Variation in I across time or space thus can be dominated (or solely driven) by variation in the strength of demographic stochasticity. We illustrate these points using simulations and empirical data from a population study on great tits Parus major. Our analysis shows that the scope for fecundity selection in the great tits is substantially higher when using annual number of recruits as the fitness measure, rather than fledglings or eggs, even after adjusting for the dependence of I on mean fitness. This suggests nonrandom survival of juveniles across families between life stages. Indeed, previous work on this population has shown that offspring recruitment is often nonrandom with respect to clutch size and laying date of parents, for example. We conclude that one cannot make direct inferences about selection based on fitness data alone. However, examining variation in ∆ I F (the opportunity for fecundity selection adjusted for mean fitness) across life stages, years or environments can offer clues as to when/where fecundity selection might be strongest, which can be useful for research planning and experimental design.


Subject(s)
Passeriformes , Reproduction , Animals , Ecology , Fertility , Selection, Genetic
4.
Evol Lett ; 6(2): 178-188, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35386830

ABSTRACT

The mismatch between when individuals breed and when we think they should breed has been a long-standing problem in evolutionary ecology. Price et al. is a classic theory paper in this field and is mainly cited for its most obvious result: if individuals with high nutritional condition breed early, then the advantage of breeding early may be overestimated when information on nutritional condition is absent. Price at al.'s less obvious result is that individuals, on average, are expected to breed later than the optimum. Here, we provide an explanation of their non-intuitive result in terms of hard selection, and go on to show that neither of their results are expected to hold if the relationship between breeding date and nutrition is allowed to evolve. By introducing the assumption that the advantage of breeding early is greater for individuals in high nutritional condition, we show that their most cited result can be salvaged. However, individuals, on average, are expected to breed earlier than the optimum, not later. More generally, we also show that the hard selection mechanisms that underpin these results have major implications for the evolution of plasticity: when environmental heterogeneity becomes too great, plasticity is selected against, prohibiting the evolution of generalists.

5.
Proc Biol Sci ; 288(1958): 20211509, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34521251

ABSTRACT

Metabolism defines the energetic cost of life, yet we still know relatively little about why intraspecific variation in metabolic rate arises and persists. Spatio-temporal variation in selection potentially maintains differences, but relationships between metabolic traits (standard metabolic rate (SMR), maximum metabolic rate (MMR), and aerobic scope) and fitness across contexts are unresolved. We show that associations between SMR, MMR, and growth rate (a key fitness-related trait) vary depending on the thermal regime (a potential selective agent) in offspring of wild-sampled brown trout from two populations reared for approximately 15 months in either a cool or warm (+1.8°C) regime. SMR was positively related to growth in the cool, but negatively related in the warm regime. The opposite patterns were found for MMR and growth associations (positive in warm, negative in the cool regime). Mean SMR, but not MMR, was lower in warm regimes within both populations (i.e. basal metabolic costs were reduced at higher temperatures), consistent with an adaptive acclimation response that optimizes growth. Metabolic phenotypes thus exhibited a thermally sensitive metabolic 'floor' and a less flexible metabolic 'ceiling'. Our findings suggest a role for growth-related fluctuating selection in shaping patterns of metabolic variation that is likely important in adapting to climate change.


Subject(s)
Basal Metabolism , Trout , Acclimatization , Animals , Energy Metabolism , Phenotype
6.
Ecol Evol ; 11(12): 8347-8362, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34188891

ABSTRACT

The occurrence of alternative morphs within populations is common, but the underlying molecular mechanisms remain poorly understood. Many animals, for example, exhibit facultative migration, where two or more alternative migratory tactics (AMTs) coexist within populations. In certain salmonid species, some individuals remain in natal rivers all their lives, while others (in particular, females) migrate to sea for a period of marine growth. Here, we performed transcriptional profiling ("RNA-seq") of the brain and liver of male and female brown trout to understand the genes and processes that differentiate between migratory and residency morphs (AMT-associated genes) and how they may differ in expression between the sexes. We found tissue-specific differences with a greater number of genes expressed differentially in the liver (n = 867 genes) compared with the brain (n = 10) between the morphs. Genes with increased expression in resident livers were enriched for Gene Ontology terms associated with metabolic processes, highlighting key molecular-genetic pathways underlying the energetic requirements associated with divergent migratory tactics. In contrast, smolt-biased genes were enriched for biological processes such as response to cytokines, suggestive of possible immune function differences between smolts and residents. Finally, we identified evidence of sex-biased gene expression for AMT-associated genes in the liver (n = 12) but not the brain. Collectively, our results provide insights into tissue-specific gene expression underlying the production of alternative life histories within and between the sexes, and point toward a key role for metabolic processes in the liver in mediating divergent physiological trajectories of migrants versus residents.

7.
Ecol Lett ; 24(7): 1505-1521, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33931936

ABSTRACT

Interactions between natural selection and population dynamics are central to both evolutionary-ecology and biological responses to anthropogenic change. Natural selection is often thought to incur a demographic cost that, at least temporarily, reduces population growth. However, hard and soft selection clarify that the influence of natural selection on population dynamics depends on ecological context. Under hard selection, an individual's fitness is independent of the population's phenotypic composition, and substantial population declines can occur when phenotypes are mismatched with the environment. In contrast, under soft selection, an individual's fitness is influenced by its phenotype relative to other interacting conspecifics. Soft selection generally influences which, but not how many, individuals survive and reproduce, resulting in little effect on population growth. Despite these important differences, the distinction between hard and soft selection is rarely considered in ecology. Here, we review and synthesize literature on hard and soft selection, explore their ecological causes and implications and highlight their conservation relevance to climate change, inbreeding depression, outbreeding depression and harvest. Overall, these concepts emphasise that natural selection and evolution may often have negligible or counterintuitive effects on population growth-underappreciated outcomes that have major implications in a rapidly changing world.


Subject(s)
Biological Evolution , Selection, Genetic , Humans , Inbreeding , Phenotype , Population Dynamics
8.
Front Immunol ; 12: 568729, 2021.
Article in English | MEDLINE | ID: mdl-33717060

ABSTRACT

Vertebrates have evolved a complex immune system required for the identification of and coordinated response to harmful pathogens. Migratory species spend periods of their life-cycle in more than one environment, and their immune system consequently faces a greater diversity of pathogens residing in different environments. In facultatively anadromous salmonids, individuals may spend parts of their life-cycle in freshwater and marine environments. For species such as the brown trout Salmo trutta, sexes differ in their life-histories with females more likely to migrate to sea while males are more likely to stay and complete their life-cycle in their natal river. Salmonids have also undergone a lineage-specific whole genome duplication event, which may provide novel immune innovations but our current understanding of the differences in salmonid immune expression between the sexes is limited. We characterized the brown trout immune gene repertoire, identifying a number of canonical immune genes in non-salmonid teleosts to be duplicated in S. trutta, with genes involved in innate and adaptive immunity. Through genome-wide transcriptional profiling ("RNA-seq") of male and female livers to investigate sex differences in gene expression amplitude and alternative splicing, we identified immune genes as being generally male-biased in expression. Our study provides important insights into the evolutionary consequences of whole genome duplication events on the salmonid immune gene repertoire and how the sexes differ in constitutive immune expression.


Subject(s)
Biological Evolution , Gene Expression Regulation , Immune System/immunology , Immune System/metabolism , Salmonidae/genetics , Salmonidae/immunology , Animals , Computational Biology/methods , Evolution, Molecular , Female , Gene Expression Profiling , Genomics/methods , Male , Organ Specificity/genetics , Trout/genetics , Trout/immunology
9.
Conserv Physiol ; 8(1): coaa096, 2020.
Article in English | MEDLINE | ID: mdl-33093959

ABSTRACT

Metabolic rates vary hugely within and between populations, yet we know relatively little about factors causing intraspecific variation. Since metabolic rate determines the energetic cost of life, uncovering these sources of variation is important to understand and forecast responses to environmental change. Moreover, few studies have examined factors causing intraspecific variation in metabolic flexibility. We explore how extrinsic environmental conditions and intrinsic factors contribute to variation in metabolic traits in brown trout, an iconic and polymorphic species that is threatened across much of its native range. We measured metabolic traits in offspring from two wild populations that naturally show life-history variation in migratory tactics (one anadromous, i.e. sea-migratory, one non-anadromous) that we reared under either optimal food or experimental conditions of long-term food restriction (lasting between 7 and 17 months). Both populations showed decreased standard metabolic rates (SMR-baseline energy requirements) under low food conditions. The anadromous population had higher maximum metabolic rate (MMR) than the non-anadromous population, and marginally higher SMR. The MMR difference was greater than SMR and consequently aerobic scope (AS) was higher in the anadromous population. MMR and AS were both higher in males than females. The anadromous population also had higher AS under low food compared to optimal food conditions, consistent with population-specific effects of food restriction on AS. Our results suggest different components of metabolic rate can vary in their response to environmental conditions, and according to intrinsic (population-background/sex) effects. Populations might further differ in their flexibility of metabolic traits, potentially due to intrinsic factors related to life history (e.g. migratory tactics). More comparisons of populations/individuals with divergent life histories will help to reveal this. Overall, our study suggests that incorporating an understanding of metabolic trait variation and flexibility and linking this to life history and demography will improve our ability to conserve populations experiencing global change.

10.
Ecol Evol ; 10(4): 1762-1783, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32128115

ABSTRACT

The degree of natal philopatry relative to natal dispersal in animal populations has important demographic and genetic consequences and often varies substantially within species. In salmonid fishes, lakes have been shown to have a strong influence on dispersal and gene flow within catchments; for example, populations spawning in inflow streams are often reproductively isolated and genetically distinct from those spawning in relatively distant outflow streams. Less is known, however, regarding the level of philopatry and genetic differentiation occurring at microgeographic scales, for example, where inflow and outflow streams are separated by very small expanses of lake habitat. Here, we investigated the interplay between genetic differentiation and fine-scale spawning movements of brown trout between their lake-feeding habitat and two spawning streams (one inflow, one outflow, separated by <100 m of lake habitat). Most (69.2%) of the lake-tagged trout subsequently detected during the spawning period were recorded in just one of the two streams, consistent with natal fidelity, while the remainder were detected in both streams, creating an opportunity for these individuals to spawn in both natal and non-natal streams. The latter behavior was supported by genetic sibship analysis, which revealed several half-sibling dyads containing one individual that was sampled as a fry in the outflow and another that was sampled as fry in the inflow. Genetic clustering analyses in conjunction with telemetry data suggested that asymmetrical dispersal patterns were occurring, with natal fidelity being more common among individuals originating from the outflow than the inflow stream. This was corroborated by Bayesian analysis of gene flow, which indicated significantly higher rates of gene flow from the inflow into the outflow than vice versa. Collectively, these results reveal how a combination of telemetry and genetics can identify distinct reproductive behaviors and associated asymmetries in natal dispersal that produce subtle, but nonetheless biologically relevant, population structuring at microgeographic scales.

11.
Glob Chang Biol ; 26(5): 2878-2896, 2020 05.
Article in English | MEDLINE | ID: mdl-32103581

ABSTRACT

With rapid global change, organisms in natural systems are exposed to a multitude of stressors that likely co-occur, with uncertain impacts. We explored individual and cumulative effects of co-occurring environmental stressors on the striking, yet poorly understood, phenomenon of facultative migration. We reared offspring of a brown trout population that naturally demonstrates facultative anadromy (sea migration), under different environmental stressor treatments and measured life history responses in terms of migratory tactics and freshwater maturation rates. Juvenile fish were exposed to reduced food availability, temperatures elevated to 1.8°C above natural conditions or both treatments in combination over 18 months of experimental tank rearing. When considered in isolation, reduced food had negative effects on the size, mass and condition of fish across the experiment. We detected variable effects of warm temperatures (negative effects on size and mass, but positive effect on lipids). When combined with food restriction, temperature effects on these traits were less pronounced, implying antagonistic stressor effects on morphological traits. Stressors combined additively, but had opposing effects on life history tactics: migration increased and maturation rates decreased under low food conditions, whereas the opposite occurred in the warm temperature treatment. Not all fish had expressed maturation or migration tactics by the end of the study, and the frequency of these 'unassigned' fish was higher in food deprivation treatments, but lower in warm treatments. Fish showing migration tactics were smaller and in poorer condition than fish showing maturation tactics, but were similar in size to unassigned fish. We further detected effects of food restriction on hypo-osmoregulatory function of migrants that may influence the fitness benefits of the migratory tactic at sea. We also highlight that responses to multiple stressors may vary depending on the response considered. Collectively, our results indicate contrasting effects of environmental stressors on life history trajectories in a facultatively migratory species.


Subject(s)
Animal Migration , Trout , Animals , Fresh Water , Temperature
12.
J Fish Biol ; 95(3): 692-718, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31197849

ABSTRACT

Brown trout Salmo trutta is endemic to Europe, western Asia and north-western Africa; it is a prominent member of freshwater and coastal marine fish faunas. The species shows two resident (river-resident, lake-resident) and three main facultative migratory life histories (downstream-upstream within a river system, fluvial-adfluvial potamodromous; to and from a lake, lacustrine-adfluvial (inlet) or allacustrine (outlet) potamodromous; to and from the sea, anadromous). River-residency v. migration is a balance between enhanced feeding and thus growth advantages of migration to a particular habitat v. the costs of potentially greater mortality and energy expenditure. Fluvial-adfluvial migration usually has less feeding improvement, but less mortality risk, than lacustrine-adfluvial or allacustrine and anadromous, but the latter vary among catchments as to which is favoured. Indirect evidence suggests that around 50% of the variability in S. trutta migration v. residency, among individuals within a population, is due to genetic variance. This dichotomous decision can best be explained by the threshold-trait model of quantitative genetics. Thus, an individual's physiological condition (e.g., energy status) as regulated by environmental factors, genes and non-genetic parental effects, acts as the cue. The magnitude of this cue relative to a genetically predetermined individual threshold, governs whether it will migrate or sexually mature as a river-resident. This decision threshold occurs early in life and, if the choice is to migrate, a second threshold probably follows determining the age and timing of migration. Migration destination (mainstem river, lake, or sea) also appears to be genetically programmed. Decisions to migrate and ultimate destination result in a number of subsequent consequential changes such as parr-smolt transformation, sexual maturity and return migration. Strong associations with one or a few genes have been found for most aspects of the migratory syndrome and indirect evidence supports genetic involvement in all parts. Thus, migratory and resident life histories potentially evolve as a result of natural and anthropogenic environmental changes, which alter relative survival and reproduction. Knowledge of genetic determinants of the various components of migration in S. trutta lags substantially behind that of Oncorhynchus mykiss and other salmonines. Identification of genetic markers linked to migration components and especially to the migration-residency decision, is a prerequisite for facilitating detailed empirical studies. In order to predict effectively, through modelling, the effects of environmental changes, quantification of the relative fitness of different migratory traits and of their heritabilities, across a range of environmental conditions, is also urgently required in the face of the increasing pace of such changes.


Subject(s)
Animal Migration , Trout/physiology , Animals , Ecosystem , Energy Metabolism , Female , Internship and Residency , Lakes , Male , Quantitative Trait Loci , Reproduction , Rivers , Sexual Behavior, Animal , Trout/genetics
13.
Malar J ; 17(1): 291, 2018 Aug 10.
Article in English | MEDLINE | ID: mdl-30097031

ABSTRACT

BACKGROUND: Portfolio effects were first described as a basis for mitigating against financial risk by diversifying investments. Distributing investment across several different assets can stabilize returns and reduce risks by statistical averaging of individual asset dynamics that often correlate weakly or negatively with each other. The same simple probability theory is equally applicable to complex ecosystems, in which biological and environmental diversity stabilizes ecosystems against natural and human-mediated perturbations. Given the fundamental limitations to how well the full complexity of ecosystem dynamics can be understood or anticipated, the portfolio effect concept provides a simple framework for more critical data interpretation and pro-active conservation management. Applied to conservation ecology purposes, the portfolio effect concept informs management strategies emphasizing identification and maintenance of key ecological processes that generate complexity, diversity and resilience against inevitable, often unpredictable perturbations. IMPLICATIONS: Applied to the reciprocal goal of eliminating the least valued elements of global biodiversity, specifically lethal malaria parasites and their vector mosquitoes, simply understanding the portfolio effect concept informs more cautious interpretation of surveillance data and simulation model predictions. Malaria transmission mediated by guilds of multiple vectors in complex landscapes, with highly variable climatic and meteorological conditions, as well as changing patterns of land use and other human behaviours, will systematically tend to be more resilient to attack with vector control than it appears based on even the highest quality surveillance data or predictive models. CONCLUSION: Malaria vector control programmes may need to be more ambitious, interpret their short-to-medium term assessments of intervention impact more cautiously, and manage stakeholder expectations more conservatively than has often been the case thus far.


Subject(s)
Anopheles/physiology , Malaria/prevention & control , Mosquito Control/methods , Mosquito Vectors/physiology , Animals , Anopheles/parasitology , Malaria/psychology , Mosquito Vectors/parasitology
14.
Am Nat ; 191(5): E144-E158, 2018 05.
Article in English | MEDLINE | ID: mdl-29693435

ABSTRACT

Despite ample evidence for the presence of maternal effects (MEs) in a variety of traits and strong theoretical indications for their evolutionary consequences, empirical evidence to what extent MEs can influence evolutionary responses to selection remains ambiguous. We tested the degree to which MEs can alter the rate of adaptation of a key life-history trait, clutch size, using an individual-based model approach parameterized with experimental data from a long-term study of great tits (Parus major). We modeled two types of MEs: (i) an environmentally plastic ME, in which the relationship between maternal and offspring clutch size depended on the maternal environment via offspring condition, and (ii) a fixed ME, in which this relationship was constant. Although both types of ME affected the rate of adaptation following an abrupt environmental shift, the overall effects were small. We conclude that evolutionary consequences of MEs are modest at best in our study system, at least for the trait and the particular type of ME we considered here. A closer link between theoretical and empirical work on MEs would hence be useful to obtain accurate predictions about the evolutionary consequences of MEs more generally.


Subject(s)
Adaptation, Biological , Clutch Size , Life History Traits , Maternal Inheritance , Songbirds/genetics , Animals , Environment , Female , Male
15.
Evolution ; 70(10): 2211-2225, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27464856

ABSTRACT

Key life history traits such as breeding time and clutch size are frequently both heritable and under directional selection, yet many studies fail to document microevolutionary responses. One general explanation is that selection estimates are biased by the omission of correlated traits that have causal effects on fitness, but few valid tests of this exist. Here, we show, using a quantitative genetic framework and six decades of life-history data on two free-living populations of great tits Parus major, that selection estimates for egg-laying date and clutch size are relatively unbiased. Predicted responses to selection based on the Robertson-Price Identity were similar to those based on the multivariate breeder's equation (MVBE), indicating that unmeasured covarying traits were not missing from the analysis. Changing patterns of phenotypic selection on these traits (for laying date, linked to climate change) therefore reflect changing selection on breeding values, and genetic constraints appear not to limit their independent evolution. Quantitative genetic analysis of correlational data from pedigreed populations can be a valuable complement to experimental approaches to help identify whether apparent associations between traits and fitness are biased by missing traits, and to parse the roles of direct versus indirect selection across a range of environments.


Subject(s)
Life History Traits , Models, Genetic , Passeriformes/genetics , Selection, Genetic , Animals , Environment , Passeriformes/growth & development , Pedigree , Phenotype , Reproduction/genetics
16.
Philos Trans R Soc Lond B Biol Sci ; 371(1690)2016 Mar 19.
Article in English | MEDLINE | ID: mdl-26926275

ABSTRACT

Much of the evidence for the idea that individuals differ in their propensity to innovate and solve new problems has come from studies on captive primates. Increasingly, behavioural ecologists are studying innovativeness in wild populations, and uncovering links with functional behaviour and fitness-related traits. The relative importance of genetic and environmental factors in driving this variation, however, remains unknown. Here, we present the results of the first large-scale study to examine a range of causal factors underlying innovative problem-solving performance (PSP) among 831 great tits (Parus major) temporarily taken into captivity. Analyses show that PSP in this population: (i) was linked to a variety of individual factors, including age, personality and natal origin (immigrant or local-born); (ii) was influenced by natal environment, because individuals had a lower PSP when born in poor-quality habitat, or where local population density was high, leading to cohort effects. Links with many of the individual and environmental factors were present only in some years. In addition, PSP (iii) had little or no measurable heritability, as estimated by a Bayesian animal model; and (iv) was not influenced by maternal effects. Despite previous reports of links between PSP and a range of functional traits in this population, the analyses here suggest that innovativeness had weak if any evolutionary potential. Instead most individual variation was caused by phenotypic plasticity driven by links with other behavioural traits and by environmentally mediated developmental stress. Heritability estimates are population, time and context specific, however, and more studies are needed to determine the generality of these effects. Our results shed light on the causes of innovativeness within populations, and add to the debate on the relative importance of genetic and environmental factors in driving phenotypic variation within populations.


Subject(s)
Behavior, Animal/physiology , Passeriformes/genetics , Passeriformes/physiology , Animals , Environment , Exploratory Behavior , Female , Male , Models, Biological , Problem Solving , Seasons , Time Factors
17.
Science ; 350(6262): 772-7, 2015 Nov 13.
Article in English | MEDLINE | ID: mdl-26564847

ABSTRACT

Climate change impacts on vertebrates have consequences for marine ecosystem structures and services. We review marine fish, mammal, turtle, and seabird responses to climate change and discuss their potential for adaptation. Direct and indirect responses are demonstrated from every ocean. Because of variation in research foci, observed responses differ among taxonomic groups (redistributions for fish, phenology for seabirds). Mechanisms of change are (i) direct physiological responses and (ii) climate-mediated predator-prey interactions. Regional-scale variation in climate-demographic functions makes range-wide population dynamics challenging to predict. The nexus of metabolism relative to ecosystem productivity and food webs appears key to predicting future effects on marine vertebrates. Integration of climate, oceanographic, ecosystem, and population models that incorporate evolutionary processes is needed to prioritize the climate-related conservation needs for these species.


Subject(s)
Birds/classification , Climate Change , Endangered Species , Fishes/classification , Mammals/classification , Turtles/classification , Animals , Aquatic Organisms , Extinction, Biological , Phylogeny , Population Dynamics , Seawater
18.
Evol Appl ; 8(9): 881-900, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26495041

ABSTRACT

Understanding the extent, scale and genetic basis of local adaptation (LA) is important for conservation and management. Its relevance in salmonids at microgeographic scales, where dispersal (and hence potential gene flow) can be substantial, has however been questioned. Here, we compare the fitness of communally reared offspring of local and foreign Atlantic salmon Salmo salar from adjacent Irish rivers and reciprocal F1 hybrid crosses between them, in the wild 'home' environment of the local population. Experimental groups did not differ in wild smolt output but a catastrophic flood event may have limited our ability to detect freshwater performance differences, which were evident in a previous study. Foreign parr exhibited higher, and hybrids intermediate, emigration rates from the natal stream relative to local parr, consistent with genetically based behavioural differences. Adult return rates were lower for the foreign compared to the local group. Overall lifetime success of foreigners and hybrids relative to locals was estimated at 31% and 40% (mean of both hybrid groups), respectively. The results imply a genetic basis to fitness differences among populations separated by only 50 km, driven largely by variation in smolt to adult return rates. Hence even if supplementary stocking programs obtain broodstock from neighbouring rivers, the risk of extrinsic outbreeding depression may be high.

19.
Ecol Evol ; 4(17): 3408-19, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25535557

ABSTRACT

Parasites play key ecological and evolutionary roles through the costs they impose on their host. In wild populations, the effect of parasitism is likely to vary considerably with environmental conditions, which may affect the availability of resources to hosts for defense. However, the interaction between parasitism and prevailing conditions is rarely quantified. In addition to environmental variation acting on hosts, individuals are likely to vary in their response to parasitism, and the combined effect of both may increase heterogeneity in host responses. Offspring hierarchies, established by parents in response to uncertain rearing conditions, may be an important source of variation between individuals. Here, we use experimental antiparasite treatment across 5 years of variable conditions to test how annual population productivity (a proxy for environmental conditions) and parasitism interact to affect growth and survival of different brood members in juvenile European shags (Phalacrocorax aristotelis). In control broods, last-hatched chicks had more plastic growth rates, growing faster in more productive years. Older siblings grew at a similar rate in all years. Treatment removed the effect of environment on last-hatched chicks, such that all siblings in treated broods grew at a similar rate across environmental conditions. There were no differences in nematode burden between years or siblings, suggesting that variation in responses arose from intrinsic differences between chicks. Whole-brood growth rate was not affected by treatment, indicating that within-brood differences were driven by a change in resource allocation between siblings rather than a change in overall parental provisioning. We show that gastrointestinal parasites can be a key component of offspring's developmental environment. Our results also demonstrate the value of considering prevailing conditions for our understanding of parasite effects on host life-history traits. Establishing how environmental conditions shape responses to parasitism is important as environmental variability is predicted to increase.

20.
Proc Biol Sci ; 281(1793)2014 Oct 22.
Article in English | MEDLINE | ID: mdl-25165771

ABSTRACT

The seasonal timing of lifecycle events is closely linked to individual fitness and hence, maladaptation in phenological traits may impact population dynamics. However, few studies have analysed whether and why climate change will alter selection pressures and hence possibly induce maladaptation in phenology. To fill this gap, we here use a theoretical modelling approach. In our models, the phenologies of consumer and resource are (potentially) environmentally sensitive and depend on two different but correlated environmental variables. Fitness of the consumer depends on the phenological match with the resource. Because we explicitly model the dependence of the phenologies on environmental variables, we can test how differential (heterogeneous) versus equal (homogeneous) rates of change in the environmental variables affect selection on consumer phenology. As expected, under heterogeneous change, phenotypic plasticity is insufficient and thus selection on consumer phenology arises. However, even homogeneous change leads to directional selection on consumer phenology. This is because the consumer reaction norm has historically evolved to be flatter than the resource reaction norm, owing to time lags and imperfect cue reliability. Climate change will therefore lead to increased selection on consumer phenology across a broad range of situations.


Subject(s)
Climate Change , Food Chain , Selection, Genetic , Animals , Larva/growth & development , Larva/physiology , Lepidoptera/growth & development , Lepidoptera/physiology , Models, Biological , Seasons , Songbirds/genetics , Songbirds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...