Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Nat Chem ; 16(1): 36-41, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37749235

ABSTRACT

Amorphous calcium carbonate is an important precursor for biomineralization in marine organisms. Key outstanding problems include understanding the structure of amorphous calcium carbonate and rationalizing its metastability as an amorphous phase. Here we report high-quality atomistic models of amorphous calcium carbonate generated using state-of-the-art interatomic potentials to help guide fits to X-ray total scattering data. Exploiting a recently developed inversion approach, we extract from these models the effective Ca⋯Ca interaction potential governing the structure. This potential contains minima at two competing distances, corresponding to the two different ways that carbonate ions bridge Ca2+-ion pairs. We reveal an unexpected mapping to the Lennard-Jones-Gauss model normally studied in the context of computational soft matter. The empirical model parameters for amorphous calcium carbonate take values known to promote structural complexity. We thus show that both the complex structure and its resilience to crystallization are actually encoded in the geometrically frustrated effective interactions between Ca2+ ions.

2.
Sci Rep ; 8(1): 13731, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30213974

ABSTRACT

More than 10% of the global human population is now afflicted with kidney stones, which are commonly associated with other significant health problems including diabetes, hypertension and obesity. Nearly 70% of these stones are primarily composed of calcium oxalate, a mineral previously assumed to be effectively insoluble within the kidney. This has limited currently available treatment options to painful passage and/or invasive surgical procedures. We analyze kidney stone thin sections with a combination of optical techniques, which include bright field, polarization, confocal and super-resolution nanometer-scale auto-fluorescence microscopy. Here we demonstrate using interdisciplinary geology and biology (geobiology) approaches that calcium oxalate stones undergo multiple events of dissolution as they crystallize and grow within the kidney. These observations open a fundamentally new paradigm for clinical approaches that include in vivo stone dissolution and identify high-frequency layering of organic matter and minerals as a template for biomineralization in natural and engineered settings.


Subject(s)
Calcium Oxalate/chemistry , Kidney Calculi/chemistry , Kidney Calculi/therapy , Kidney/chemistry , Calcium Oxalate/adverse effects , Crystallization , Humans , Kidney/diagnostic imaging , Kidney/pathology , Kidney/ultrastructure , Kidney Calculi/pathology , Kidney Calculi/ultrastructure , Microscopy, Confocal , Minerals/chemistry
3.
Icarus ; 302: 285-295, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29670302

ABSTRACT

Salts with high hydration states have the potential to maintain high levels of relative humidity (RH) in the near subsurface of Mars, even at moderate temperatures. These conditions could promote deliquescence of lower hydrates of ferric sulfate, chlorides, and other salts. Previous work on deliquesced ferric sulfates has shown that when these materials undergo rapid dehydration, such as that which would occur upon exposure to present day Martian surface conditions, an amorphous phase forms. However, the fate of deliquesced halides or mixed ferric sulfate-bearing brines are presently unknown. Here we present results of rapid dehydration experiments on Ca-, Na-, Mg- and Fe-chloride brines and multi-component (Fe2 (SO4)3 ± Ca, Na, Mg, Fe, Cl, HCO3) brines at ∼21°C, and characterize the dehydration products using visible/near-infrared (VNIR) reflectance spectroscopy, mid-infrared attenuated total reflectance spectroscopy, and X-ray diffraction (XRD) analysis. We find that rapid dehydration of many multicomponent brines can form amorphous solids or solids with an amorphous component, and that the presence of other elements affects the persistence of the amorphous phase under RH fluctuations. Of the pure chloride brines, only Fe-chloride formed an amorphous solid. XRD patterns of the multicomponent amorphous salts show changes in position, shape, and magnitude of the characteristic diffuse scattering observed in all amorphous materials that could be used to help constrain the composition of the amorphous salt. Amorphous salts deliquesce at lower RH values compared to their crystalline counterparts, opening up the possibility of their role in potential deliquescence-related geologic phenomena such as recurring slope lineae (RSLs) or soil induration. This work suggests that a wide range of aqueous mixed salt solutions can lead to the formation of amorphous salts and are possible for Mars; detailed studies of the formation mechanisms, stability and transformation behaviors of amorphous salts are necessary to further constrain their contribution to Martian surface materials.

4.
J Environ Sci (China) ; 65: 103-115, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29548381

ABSTRACT

Sorption of tungstate on boehmite (γ-AlOOH) is increased by co-sorption with Co2+ over the near-neutral pH range. Batch uptake experiments show up to a 3-fold increase in tungstate uptake over the range WO42-=50-1000µmol/L compared to boehmite not treated with Co2+. Desorption experiments reveal a corresponding decrease in sorption reversibility for tungstate co-sorbed with Co2+. Reaction of boehmite with Co2+ results in the formation of CoAl layered double hydroxide (LDH), as confirmed by X-ray diffraction and X-ray absorption spectroscopy. Tungsten L3-edge X-ray absorption near edge structure (XANES) reveals that W(VI) is octahedrally coordinated in all sorption samples, with polymeric tungstate species forming at higher tungstate concentrations. X-ray diffraction and X-ray absorption spectroscopy indicate that the mechanism for enhancement of tungstate uptake is the formation of surface complexes on boehmite at low tungstate concentrations, while exchange into the CoAl LDH becomes important at higher tungstate concentrations. The results provide a basis for developing strategies to enhance tungstate sorption and to limit its environmental mobility at near-neutral pH conditions.


Subject(s)
Aluminum Hydroxide/chemistry , Aluminum Oxide/chemistry , Models, Chemical , Tungsten Compounds/chemistry , Adsorption , Hydroxides/chemistry , Surface Properties
5.
J Colloid Interface Sci ; 461: 249-260, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26402784

ABSTRACT

Mechanisms of tungstate sorption on the mineral boehmite (γ-AlOOH) were studied using batch uptake experiments and X-ray absorption spectroscopy. Batch uptake experiments over the pH range 4-8 and [W]=50-2000 µM show typical oxyanion behavior, and isotherm experiments reveal continued uptake with increasing tungstate concentration without any clear uptake maximum. Desorption experiments showed that sorption is irreversible at pH 4 and partly reversible at pH 8. Tungsten L1- and L3-edge XANES spectroscopy indicates that all sorbed tungstates are octahedrally coordinated, even though the dominant solution species at pH 8 is a tetrahedral monotungstate. Tungsten L3-edge EXAFS analysis shows that sorbed tungstate occurs as polymeric form(s), as indicated by the presence of corner- and edge-sharing of distorted tungstate octahedra. The occurrence of polymeric tungstate on the surface at pH 8 indicates that sorption is accompanied by polymerization and a coordination change from tetrahedral (in solution) to distorted octahedral (on the surface). The strong tendency for tungstate polymerization on boehmite can explain the continued uptake without an apparent maximum in sorption, and the limited desorption behavior. Our results provide the basis for a predictive model of tungstate uptake by boehmite, which can be important for understanding tungstate mobility, toxicity, and bioavailability.

6.
Geochem Trans ; 17: 5, 2016.
Article in English | MEDLINE | ID: mdl-28316506

ABSTRACT

The effect of simulated solar radiation on the oxidation of arsenite [As(III)] to arsenate [As(V)] on the layered manganese oxide, birnessite, was investigated. Experiments were conducted where birnessite suspensions, under both anoxic and oxic conditions, were irradiated with simulated solar radiation in the presence of As(III) at pH 5, 7, and 9. X-ray absorption spectroscopy (XAS) was used to determine the nature of the adsorbed product on the surface of the birnessite. The oxidation of As(III) in the presence of birnessite under simulated solar light irradiation occurred at a rate that was faster than in the absence of light at pH 5. At pH 7 and 9, As(V) production was significantly less than at pH 5 and the amount of As(V) production for a given reaction time was the same under dark and light conditions. The first order rate constant (kobs) for As(III) oxidation in the presence of light and in the dark at pH 5 were determined to be 0.07 and 0.04 h-1, respectively. The As(V) product was released into solution along with Mn(II), with the latter product resulting from the reduction of Mn(IV) and/or Mn(III) during the As(III) oxidation process. Post-reaction XAS analysis of As(III) exposed birnessite showed that arsenic was present on the surface as As(V). Experimental results also showed no evidence that reactive oxygen species played a role in the As(III) oxidation process.

7.
Environ Sci Technol ; 49(5): 2858-66, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25658969

ABSTRACT

The redox chemistry of chromate (Cr(VI)) and arsenite (As(III)) on the iron oxyhydroxide, ferrihydrite (Fh), was investigated. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray absorption spectroscopy (XAS), and X-ray photoelectron spectroscopy (XPS) were used to determine the composition of the adsorbed layer on Fh during and after exposure to solution-phase Cr(VI) and As(III). The individual exposure of Cr(VI) or As(III) on Fh resulted in the adsorption of the respective species, and there was no change in the oxidation state of either species. In contrast, exposure of Fh simultaneously to Cr(VI) and As(III) led to an adsorbed layer that was primarily Cr(III) and As(V). This redox transformation occurred over various experimental conditions at pH 3, 5, and 7 and in the presence or absence of O2, as demonstrated by in situ ATR-FTIR results. A similar redox transformation was not observed at a solution of pH 9, due to minimal Cr(VI) adsorption. Postreaction XPS showed that the majority of adsorbed arsenic existed as As(V) at pH 3, 5, and 7, while As(III) was the main species detected at pH 9. At pH 3 the redox chemistry between Cr(VI) and As(III) led to a As(V) product surface loading of ∼600 mmol/kg. Experiments performed in the absence of dissolved O2 resulted in less As(V) on the surface compared to experiments in which O2 was present for equivalent reaction times.


Subject(s)
Arsenites/chemistry , Chromates/chemistry , Ferric Compounds/chemistry , Oxidation-Reduction , Adsorption , Photoelectron Spectroscopy , Spectroscopy, Fourier Transform Infrared , X-Ray Absorption Spectroscopy
8.
J Occup Environ Med ; 56(3): 243-51, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24603199

ABSTRACT

OBJECTIVES: Determine whether surface dust grab samples taken from a large military base in Iraq are toxic and respirable. METHODS: X-ray diffraction for mineral content, x-ray fluorescence for elemental content, in vivo mouse dust challenges for assessment of histological changes, bronchoalveolar lavage for cytokines, polarizing light microscopy for crystals in lung tissue, and Fluorescence Activated Cell Sorting for cell surface and intracellular markers were utilized. RESULTS: Camp Victory, Iraq dust taken during wartime contains respirable particles 2.5 microns in size, constituting particulate matter air pollution. Dust particles are angular and have sharp edges. Trace metals (including titanium) calcium and silicon are present. Mice with airway instillation of dust have polarizable crystals in lung and septate inflammation. Regulatory T cells (CD4⁺CD25⁺FOXP3⁺) are decreased in thymus and spleen. Interleukin-2 (IL-2) is upregulated in bronchoalveolar lavage. CONCLUSIONS: Respirable Iraq dust leads to lung inflammation in mice similar to that seen in patients with polarizable crystals, which seem to be titanium.


Subject(s)
Dust/immunology , Inhalation Exposure/adverse effects , Interleukin-2/metabolism , Pneumonia/pathology , Pulmonary Fibrosis/pathology , T-Lymphocytes, Regulatory , Animals , Birefringence , Bronchoalveolar Lavage Fluid/immunology , Calcium/analysis , Dust/analysis , Iraq , Lymphocyte Count , Male , Mice , Mice, Inbred C57BL , Military Facilities , Particulate Matter/chemistry , Particulate Matter/immunology , Particulate Matter/toxicity , Pneumonia/etiology , Pulmonary Fibrosis/etiology , Silicon/analysis , Spleen/pathology , Thymus Gland/pathology , Titanium/analysis , Up-Regulation
9.
Methods Enzymol ; 532: 477-500, 2013.
Article in English | MEDLINE | ID: mdl-24188779

ABSTRACT

Total X-ray scattering and pair distribution function (PDF) analysis, using a high-energy synchrotron source, allow direct study of the short- and intermediate-range structure that distinguish amorphous, structurally disordered, and nanocrystalline biominerals. For such samples in which diffuse scatter is a significant component, care must be taken in the experimental procedures to optimize data quality and extract the useful signal necessary to calculate the PDF. General methods are described for data collection and processing, including commonly used software programs. Methods for analysis and interpretation of PDFs are presented, including direct real-space refinement and reverse Monte Carlo methods. Greater application of PDFs to amorphous and poorly crystallized biominerals will provide new insight into structure, especially over length scales that are not probed by other techniques. The rapid data collection available at synchrotron facilities also allows in situ kinetic studies of reactions involving biominerals.


Subject(s)
Calcium Carbonate/chemistry , Ferric Compounds/chemistry , Ferritins/chemistry , Kinetics , Monte Carlo Method , Nanoparticles/chemistry , Powder Diffraction , Synchrotrons , X-Ray Diffraction
10.
Environ Sci Technol ; 46(15): 8044-51, 2012 Aug 07.
Article in English | MEDLINE | ID: mdl-22703473

ABSTRACT

The photochemistry of an aqueous suspension of goethite in the presence of arsenite (As(III)) was investigated with X-ray absorption near edge structure (XANES) spectroscopy and solution-phase analysis. Irradiation of the arsenite/goethite under conditions where dissolved oxygen was present in solution led to the presence of arsenate (As(V)) product adsorbed on goethite and in solution. Under anoxic conditions (absence of dissolved oxygen), As(III) oxidation occurred, but the As(V) product was largely restricted to the goethite surface. In this circumstance, however, there was a significant amount of ferrous iron release, in stark contrast to the As(III) oxidation reaction in the presence of dissolved oxygen. Results suggested that in the oxic environment ferrous iron, which formed via the photoinduced oxidation of As(III) in the presence of goethite, was heterogeneously oxidized to ferric iron by dissolved oxygen. It is likely that aqueous reactive oxygen species formed during this process led to the further oxidation of As(III) in solution. Results from the current study for As(III)/goethite also were compared to results from a prior study of the photochemistry of As(III) in the presence of another iron oxyhydroxide, ferrihydrite. The comparison showed that at pH 5 and 2 h of light exposure the instantaneous rate of aqueous-phase As(V) formation in the presence of goethite (12.4 × 10(-5) M s(-1) m(-2)) was significantly faster than in the presence of ferrihydrite (6.73 × 10(-6) M s(-1) m(-2)). It was proposed that this increased rate of ferrous iron oxidation in the presence of goethite and dissolved oxygen was the primary reason for the higher As(III) oxidation rate when compared to the As(III)/ferrihydrite system. The surface area-normalized pseudo-first-order rate constant, for example, associated with the heterogeneous oxidation of Fe(II) by dissolved oxygen in the presence of goethite (1.9 × 10(-6) L s(-1) m(-2)) was experimentally determined to be considerably higher than if ferrihydrite was present (2.0 × 10(-7) L s(-1) m(-2)) at a solution pH of 5.


Subject(s)
Arsenates/chemical synthesis , Arsenites/chemistry , Iron Compounds/chemistry , Minerals/chemistry , Photochemical Processes , Hydrogen-Ion Concentration , Kinetics , Oxidation-Reduction , Oxygen/chemistry , Solubility , X-Ray Absorption Spectroscopy
12.
Environ Sci Technol ; 45(22): 9687-92, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21988151

ABSTRACT

Structural information is important for understanding surface adsorption mechanisms of contaminants on metal (hydr)oxides. In this work, a novel technique was employed to study the interfacial structure of arsenate oxyanions adsorbed on γ-alumina nanoparticles, namely, differential pair distribution function (d-PDF) analysis of synchrotron X-ray total scattering. The d-PDF is the difference of properly normalized PDFs obtained for samples with and without arsenate adsorbed, otherwise identically prepared. The real space pattern contains information on atomic pair correlations between adsorbed arsenate and the atoms on γ-alumina surface (Al, O, etc.). PDF results on the arsenate adsorption sample on γ-alumina prepared at 1 mM As concentration and pH 5 revealed two peaks at 1.66 Å and 3.09 Å, corresponding to As-O and As-Al atomic pair correlations. This observation is consistent with those measured by extended X-ray absorption fine structure (EXAFS) spectroscopy, which suggests a first shell of As-O at 1.69 ± 0.01 Å with a coordination number of ~4 and a second shell of As-Al at ~3.13 ± 0.04 Å with a coordination number of ~2. These results are in agreement with a bidentate binuclear coordination environment to the octahedral Al of γ-alumina as predicted by density functional theory (DFT) calculation.


Subject(s)
Aluminum Oxide/chemistry , Arsenates/chemistry , Nanoparticles/chemistry , Adsorption , Models, Molecular , X-Ray Absorption Spectroscopy
13.
Environ Sci Technol ; 45(7): 2783-9, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21361285

ABSTRACT

The photochemistry of an aqueous suspension of the iron oxyhydroxide, ferrihydrite, in the presence of arsenite has been investigated using attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray absorption near edge structure (XANES), and solution phase analysis. Both ATR-FTIR and XANES show that the exposure of ferrihydrite to arsenite in the dark leads to no change in the As oxidation state, but the exposure of this arsenite-bearing surface, which is in contact with pH 5 water, to light leads to the conversion of the majority of the adsorbed arsenite to the As(V) bearing species, arsenate. Analysis of the solution phase shows that ferrous iron is released into solution during the oxidation of arsenite. The photochemical reaction, however, shows the characteristics of a self-terminating reaction in that there is a significant suppression of this redox chemistry before 10% of the total iron making up the ferrihydrite partitions into solution as ferrous iron. The self-terminating behavior exhibited by this photochemical arsenite/ferrihydrite system is likely due to the passivation of the ferrihydrite surface by the strongly bound arsenate product.


Subject(s)
Arsenates/chemistry , Arsenites/chemistry , Carcinogens, Environmental/chemistry , Ferric Compounds/chemistry , Hydrogen-Ion Concentration , Oxidation-Reduction , Photochemical Processes , Spectroscopy, Fourier Transform Infrared , X-Ray Absorption Spectroscopy
14.
J Colloid Interface Sci ; 340(2): 153-9, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-19796769

ABSTRACT

The interaction of selenate, selenite, and chromate with the hydrated surface of gamma-Al(2)O(3) was studied using a combination of macroscopic pH edge data, electrophoretic mobility measurements, and X-ray absorption spectroscopic analyses. The pH edge data show generally increased oxyanion adsorption with decreasing pH, and indicate ionic strength-(in)dependent adsorption of chromate and selenate across the pH range 4-9, and ionic strength-(in)dependent adsorption of selenite in this pH range. The adsorption of chromate peaks at pH 5.0, whereas for selenate and selenite no pH adsorption maxima are observed. Electrophoretic mobility measurements show that all three oxyanions decrease the zeta potential of gamma-Al(2)O(3) upon adsorption; however, only selenite decreased the pH(PZC) of the gamma-Al(2)O(3) sorbent. EXAFS data indicate that selenite ions are coordinated in a bridging bidentate fashion to surface AlO(6) octahedra, whereas no second-neighbor Al scattering was observed for adsorbed selenate ions. Combined, the results presented here show that pH is a major factor in determining the extent of adsorption of selenate, selenite, and chromate on hydrated gamma-Al(2)O(3). The results point to substantial differences between these anions as to the mode of adsorption at the hydrated gamma-Al(2)O(3) surface, with selenate adsorbing as nonprotonated outer-sphere complexes, chromate forming a mixture of monoprotonated and nonprotonated outer-sphere adsorption complexes, and selenite coordinating as inner-sphere surface complexes in bridging configuration.


Subject(s)
Aluminum Oxide/chemistry , Chromates/chemistry , Selenium Compounds/chemistry , Sodium Selenite/chemistry , Water/chemistry , Adsorption , Electrophoretic Mobility Shift Assay , Fourier Analysis , Hydrogen-Ion Concentration , Osmolar Concentration , Selenic Acid , Static Electricity , X-Ray Absorption Spectroscopy
15.
Environ Sci Technol ; 43(12): 4446-51, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19603660

ABSTRACT

We explored mechanisms for increasing U(VI) sorption by pretreating alumina surfaces with arsenate, which has a high affinity for binding with uranyl and is an analog for phosphate. Batch experiments were conducted at pH approximately 4 by pretreating a gamma-alumina surface with arsenate, followed by the addition of uranyl. Parallel experiments were conducted with different alumina loadings as well as As and U concentrations. Results show positive correlations between U(VI) uptake and [As]ini/[U]ini (ratio between the initial As solution concentration for pretreatment and the initial U solution concentration), suggesting the formation of ternary surface complexes and/or precipitates. Desorption experiments show partial irreversibility of the adsorbed U, suggesting less likelihood of remobilization. The pretreatment process results in enhanced U uptake and enhanced stability of the sorbed U, and provides a basis for designing other treatment processes for selective remediation applications.


Subject(s)
Aluminum Oxide/chemistry , Arsenates/chemistry , Uranium/chemistry , Water Pollutants, Radioactive/chemistry , Adsorption , Water/chemistry
16.
Environ Sci Technol ; 43(12): 4452-8, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19603661

ABSTRACT

In a companion study, we demonstrated that pretreatment of gamma-alumina surface with arsenate enhances uranyl uptake under acidic conditions, where uranyl otherwise sorbs poorly. Here, we examine the local structure and long-range order of the sorption products by using X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD). Arsenate was chosen for the pretreatment because of its high affinity for binding with uranyl and alumina, and because it is an analog for environmentally abundant and commercially accessible phosphate. It also facilitates characterization of sorption products using As K-edge XAS, which complements U LIII-edge XAS. Fitting results suggest the formation of U-As precipitates with structures similar to UO2HAsO4 x 4H2O (trögerite) and likely U polymeric species at high U concentrations. The ratios among surface-sorbed uranyl, U-As precipitates, and uranyl polymeric species are dependent on the [As]initial/[U]initial ratio and absolute initial U concentration. XRD suggests the precipitates are likely to be highly disordered and poorly crystalline. Current findings evaluate the mechanism by which the pretreatment results in enhanced U uptake and stability and provides a conceptual basis for designing other pretreatment technologies for uranium remediation.


Subject(s)
Aluminum Oxide/chemistry , Arsenates/chemistry , Spectrum Analysis/methods , Uranium/chemistry , Water Pollutants, Radioactive/chemistry , Adsorption , Water/chemistry
17.
Biomaterials ; 30(15): 2864-72, 2009 May.
Article in English | MEDLINE | ID: mdl-19217156

ABSTRACT

By theoretical modeling and X-ray absorption spectroscopy, the local coordination structure of Zn incorporated into hydroxylapatite was examined. Density function theory (DFT) calculations show that Zn favors the Ca2 site over the Ca1 site, and favors tetrahedral coordination. X-ray absorption near edge structure (XANES) spectroscopy results suggest one dominant coordination environment for the incorporated Zn, and no evidence was observed for other Zn-containing phases. Extended X-ray absorption fine structure (EXAFS) fitting of the synthetic samples confirms that Zn occurs in tetrahedral coordination, with two P shells at approximately 2.85-3.07A, and two higher Ca shells at approximately 3.71-4.02A. These fit results are consistent with the most favored DFT model for Zn substitution in the Ca2 site.


Subject(s)
Durapatite/chemistry , Zinc/chemistry , Models, Molecular , Spectrum Analysis/methods , X-Ray Diffraction , X-Rays
18.
Environ Health Perspect ; 116(6): 703-8, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18560523

ABSTRACT

BACKGROUND: Hairless mice that ingested arsenite in drinking water exhibited more than a 5-fold enhancement of ultraviolet radiation (UVR) carcinogenesis, whereas arsenite alone was carcinogenically inactive. Dietary organoselenium blocked the cancer enhancement effect of arsenic but not cancer induction by UVR. OBJECTIVE: In this study we sought to explain selenium blockage of As enhancement by establishing the extent that As and Se tissue distributions are coincident or divergent. METHODS: We used the X-ray fluorescence microprobe at the Advanced Photon Source (Argonne National Laboratory) to probe sections of skin and liver from hairless mice exposed to a) UVR, b) UVR + As, c) UVR + organoselenium, or d) UVR + As + organoselenium. RESULTS: We found elevated levels of As in the skin epithelium (hair follicles and epidermis) and diffusely in the liver of mice exposed to UVR + As. Arsenic was entirely absent in skin in mice exposed to UVR + As + organoselenium, but a diffuse low level was seen in the liver. As and Se locations were consistently divergent in skin; As was more diffusely distributed, whereas Se was strongly associated with membranes. X-ray absorption near-edge spectra are consistent with the presence of the seleno-bis(S-glutathionyl) arsinium ion in the liver. CONCLUSIONS: Supplemental Se was uncommonly effective at preventing even a trace of As in skin at 14 or 196 days of continuous exposure to As in drinking water. Traces of the seleno-bis(S-glutathionyl) arsinium ion in the liver suggested that formation of this compound was more likely to be responsible for the As-blocking effect of Se than was a mechanism based on antioxidation.


Subject(s)
Arsenic/toxicity , Selenium/pharmacology , Skin Neoplasms/prevention & control , Ultraviolet Rays/adverse effects , Animals , Antineoplastic Agents/pharmacology , Mice , Mice, Hairless , Neoplasms, Radiation-Induced/etiology , Neoplasms, Radiation-Induced/pathology , Neoplasms, Radiation-Induced/prevention & control , Organoselenium Compounds/pharmacology , Skin Neoplasms/etiology , Skin Neoplasms/pathology , Spectrometry, X-Ray Emission
19.
Magn Reson Chem ; 46(5): 408-17, 2008 May.
Article in English | MEDLINE | ID: mdl-18306443

ABSTRACT

Solid-state NMR spectroscopy is a potentially powerful method for obtaining molecular level structural information crucial for understanding the specific relationship between calcite crystals and occluded organic molecules that are important in biomineralization and biomimetic materials. In this work, a method is developed based on cross-polarization/magic angle spinning (CP/MAS) NMR to measure the heteronuclear distances and obtain structural information for large intracrystalline citrate defects in a synthetic calcite/citrate composite. Using compounds with well-characterized crystal structures, Mg(II) citrate and Sr(II) citrate, a correlation is established between T(IS), the CP time, and M(2) (IS), the van Vleck heteronuclear dipolar second moment, which contains distance and structural information. This correlation is supported by peak assignments obtained from calculations of the (13)C chemical shifts for crystalline Mg(II) citrate. On the basis of T(IS) (-1) versus M(2) (IS) correlation, measurement of T(IS) for carbonate ions associated with citrate defects in a calcite((13)C-enriched)/citrate coprecipitate yields an estimate for the distance between citrate and the nearest carbonate carbon that indicates close spatial proximity and provides useful constraints for future computational study. The applicability of T(IS) (-1) versus M(2) (IS) correlations to other weakly coupled spin-1/2 systems is discussed in terms of the effects of (1)H homonuclear dipolar coupling, using the CP kinetics of Zn(II) dihydroxybenzoate and kaolinite for comparison. The results suggest a limited range of correlation constants and indicate that quantitative information can be obtained from CP/MAS kinetics obtained under similar experimental conditions.

20.
J Colloid Interface Sci ; 305(1): 101-10, 2007 Jan 01.
Article in English | MEDLINE | ID: mdl-17052725

ABSTRACT

The composition and topography of calcite 10114 cleavage surfaces, with and without exposure to divalent metals, have been investigated as a function of relative humidity. Atomic force microscopy (AFM) was used to understand topographical changes on the calcite surface due to the presence of divalent metal and exposure to different humid environments. Ion scattering spectroscopy (ISS) was used to determine the composition of the near and outermost surface of the calcite after exposure to Cd and Pb and before exposure to the varying humidity conditions. In general, the extent of topographical changes observed on the calcite surface increased with the humidity level, though the initial step density of the cleaved calcite surface affects the extent of surface restructuring. Pretreatment of the calcite surface with aqueous divalent Pb prior to humidity exposure did not appear to alter the humidity-induced structural changes that occurred on the calcite surface. In contrast, calcite pretreated with divalent Cd showed little topographical change following exposure to high humidity. The results suggest that while Pb forms surface precipitates on the calcite surface, Cd exhibits a stronger interaction with the step edges of the calcite surface, which inhibits the ability of the calcite surface to restructure when exposed to a high relative humidity environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...