Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Imaging ; 9(8)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37623695

ABSTRACT

The diagnosis of brain tumors at an early stage is an exigent task for radiologists. Untreated patients rarely survive more than six months. It is a potential cause of mortality that can occur very quickly. Because of this, the early and effective diagnosis of brain tumors requires the use of an automated method. This study aims at the early detection of brain tumors using brain magnetic resonance imaging (MRI) data and efficient learning paradigms. In visual feature extraction, convolutional neural networks (CNN) have achieved significant breakthroughs. The study involves features extraction by deep convolutional layers for the efficient classification of brain tumor victims from the normal group. The deep convolutional neural network was implemented to extract features that represent the image more comprehensively for model training. Using deep convolutional features helps to increase the precision of tumor and non-tumor patient classifications. In this paper, we experimented with five machine learnings (ML) to heighten the understanding and enhance the scope and significance of brain tumor classification. Further, we proposed an ensemble of three high-performing individual ML models, namely Extreme Gradient Boosting, Ada-Boost, and Random Forest (XG-Ada-RF), to derive binary class classification output for detecting brain tumors in images. The proposed voting classifier, along with convoluted features, produced results that showed the highest accuracy of 95.9% for tumor and 94.9% for normal. Compared to individual methods, the proposed ensemble approach demonstrated improved accuracy and outperformed the individual methods.

2.
Comput Intell Neurosci ; 2022: 7025485, 2022.
Article in English | MEDLINE | ID: mdl-36156957

ABSTRACT

COVID-19 pandemic caused global epidemic infections, which is one of the most severe infections in human medical history. In the absence of proper medications and vaccines, handling the pandemic has been challenging for governments and major health facilities. Additionally, tracing COVID-19 cases and handling data generated from the pandemic are also extremely challenging. Data privacy access and collection are also a challenge when handling COVID-19 data. Blockchain technology provides various features such as decentralization, anonymity, cryptographic security, smart contracts, and a distributed framework that allows users and entities to handle COVID-19 data better. Since the outbreak has made the moral crisis in the clinical and administrative centers worse than any other that has resulted in the decline in the supply of the exact information, however, it is vital to provide fast and accurate insight into the situation. As a result of all these concerns, this study emphasizes the need for COVID-19 data processing to acquire aspects such as data security, data integrity, real-time data handling, and data management to provide patients with all benefits from which they had been denied owing to misinformation. Hence, the management of COVID-19 data through the use of the blockchain framework is crucial. Therefore, this paper illustrates how blockchain technology can be implemented in the COVID-19 data handling process. The paper also proposes a framework with three main layers: data collection layer; data access and privacy layer; and data storage layer.


Subject(s)
Blockchain , COVID-19 , COVID-19/epidemiology , Computer Security , Humans , Information Storage and Retrieval , Pandemics/prevention & control
3.
Comput Intell Neurosci ; 2022: 7040141, 2022.
Article in English | MEDLINE | ID: mdl-36156979

ABSTRACT

Diabetes mellitus is the main cause of diabetic retinopathy, the most common cause of blindness worldwide. In order to slow down or prevent vision loss and degeneration, early detection and treatment are essential. For the purpose of detecting and classifying diabetic retinopathy on fundus retina images, numerous artificial intelligence-based algorithms have been put forth by the scientific community. Due to its real-time relevance to everyone's lives, smart healthcare is attracting a lot of interest. With the convergence of IoT, this attention has increased. The leading cause of blindness among persons in their working years is diabetic eye disease. Millions of people live in the most populous Asian nations, including China and India, and the number of diabetics among them is on the rise. To provide medical screening and diagnosis for this rising population of diabetes patients, skilled clinicians faced significant challenges. Our objective is to use deep learning techniques to automatically detect blind spots in eyes and determine how serious they may be. We suggest an enhanced convolutional neural network (ECNN) utilizing a genetic algorithm in this paper. The ECNN technique's accuracy results are compared to those of existing approaches like the K-nearest neighbor approach, convolutional neural network, and support vector machine with the genetic algorithm.


Subject(s)
Deep Learning , Diabetes Mellitus , Diabetic Retinopathy , Algorithms , Artificial Intelligence , Blindness , Diabetic Retinopathy/diagnosis , Early Diagnosis , Humans , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...