Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 935: 173460, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38788939

ABSTRACT

Reduction of conflicts arising from human-wildlife interactions is necessary for coexistence. Collisions between animals and automobiles cost the world's economy billions of dollars, and wildlife management agencies often are responsible for reducing wildlife-vehicle collisions. But wildlife agencies have few proven options for reducing wildlife-vehicle collisions that are effective and financially feasible at large spatiotemporal scales germane to management. Recreational hunting by humans is a primary population management tool available for use with abundant wild ungulates that often collide with automobiles. Therefore, we tested how well policies designed to increase human hunting of deer (longer hunting seasons and increased harvest limits) reduced collisions between white-tailed deer and automobiles along 618 km of high-risk roadways in Indiana, USA. We used a 20-y dataset that compiled >300,000 deer-vehicle collisions. Targeted recreational hunting decreased deer-vehicle collisions by 21.12 % and saved society up to $653,756 (95 % CIs = $286,063-$1,154,118) in economic damages from 2018 to 2022. Potential savings was up to $1,265,694 (95 % CIs = $579,108-$2,402,813) during the same 5-y span if relaxed hunting regulations occurred along all high-risk roadways. Moreover, license sales from targeted hunting generated $206,268 in revenue for wildlife management. Targeted hunting is likely effective in other systems where ungulate-vehicle collisions are prevalent, as behavioral changes in response to human hunting has been documented in many ungulate species across several continents. Our methods are attractive for management agencies with limited funds, as relaxed hunting regulations are relatively inexpensive to implement and may generate substantial additional revenue.


Subject(s)
Accidents, Traffic , Conservation of Natural Resources , Deer , Hunting , Animals , Conservation of Natural Resources/methods , Accidents, Traffic/prevention & control , Indiana , Recreation , Animals, Wild , Humans
2.
Environ Sci Technol ; 47(4): 1784-91, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23339778

ABSTRACT

There is an abundant supply of corn stover in the United States that remains after grain is harvested which could be used to produce cellulosic biofuels mandated by the current Renewable Fuel Standard (RFS). This research integrates the Soil Water Assessment Tool (SWAT) watershed model and the DayCent biogeochemical model to investigate water quality and soil greenhouse gas flux that results when corn stover is collected at two different rates from corn-soybean and continuous corn crop rotations with and without tillage. Multiobjective watershed-scale optimizations are performed for individual pollutant-cost minimization criteria based on the economic cost of each cropping practice and (individually) the effect on nitrate, total phosphorus, sediment, or global warming potential. We compare these results with a purely economic optimization that maximizes stover production at the lowest cost without taking environmental impacts into account. We illustrate trade-offs between cost and different environmental performance criteria, assuming that nutrients contained in any stover collected must be replaced. The key finding is that stover collection using the practices modeled results in increased contributions to atmospheric greenhouse gases while reducing nitrate and total phosphorus loading to the watershed relative to the status quo without stover collection. Stover collection increases sediment loading to waterways relative to when no stover is removed for each crop rotation-tillage practice combination considered; no-till in combination with stover collection reduced sediment loading below baseline conditions without stover collection. Our results suggest that additional information is needed about (i) the level of nutrient replacement required to maintain grain yields and (ii) cost-effective management practices capable of reducing soil erosion when crop residues are removed in order to avoid contributions to climate change and water quality impairments as a result of using corn stover to satisfy the RFS.


Subject(s)
Biofuels , Greenhouse Effect , Models, Economic , Water Quality , Zea mays , Fertilizers , Gases/analysis , Water Supply
3.
Environ Sci Technol ; 45(1): 168-74, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-20853823

ABSTRACT

Despite major efforts, the reduction of reactive nitrogen (Nr) using traditional metrics and policy tools for the Chesapeake Bay has slowed in recent years. In this article, we apply the concept of the Nitrogen Cascade to the chemically dynamic nature and multiple sources of Nr to examine the temporal and spatial movement of different forms of Nr through multiple ecosystems and media. We also demonstrate the benefit of using more than the traditional mass fluxes to set criteria for action. The use of multiple metrics provides additional information about where the most effective intervention point might be. Utilizing damage costs or mortality metrics demonstrates that even though the mass fluxes to the atmosphere are lower than direct releases to terrestrial and aquatic ecosystems, total damage costs to all ecosystems and health are higher because of the cascade of Nr and the associated damages, and because they exact a higher human health cost. Abatement costs for reducing Nr releases into the air are also lower. These findings have major implications for the use of multiple metrics and the additional benefits of expanding the scope of concern beyond the Bay itself and support improved coordination between the Clean Air and Clean Water Acts while restoring the Chesapeake Bay.


Subject(s)
Environmental Monitoring/methods , Environmental Policy , Reactive Nitrogen Species/analysis , Water Pollutants, Chemical/analysis , Weights and Measures/standards , Conservation of Natural Resources/economics , Conservation of Natural Resources/methods , Environmental Monitoring/standards , Fresh Water/chemistry , Humans , Models, Chemical , Nitrogen Cycle , Seawater/chemistry , Water Pollution, Chemical/economics , Water Pollution, Chemical/legislation & jurisprudence , Water Pollution, Chemical/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...