Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-435423

ABSTRACT

BackgroundDementia-like cognitive impairment is an increasingly reported complication of SARS-CoV-2 infection. However, the underlying mechanisms responsible for this complication remain unclear. A better understanding of causative processes by which COVID-19 may lead to cognitive impairment is essential for developing preventive interventions. MethodsIn this study, we conducted a network-based, multimodal genomics comparison of COVID-19 and neurologic complications. We constructed the SARS-CoV-2 virus-host interactome from protein-protein interaction assay and CRISPR-Cas9 based genetic assay results, and compared network-based relationships therein with those of known neurological manifestations using network proximity measures. We also investigated the transcriptomic profiles (including single-cell/nuclei RNA-sequencing) of Alzheimers disease (AD) marker genes from patients infected with COVID-19, as well as the prevalence of SARS-CoV-2 entry factors in the brains of AD patients not infected with SARS-CoV-2. ResultsWe found significant network-based relationships between COVID-19 and neuroinflammation and brain microvascular injury pathways and processes which are implicated in AD. We also detected aberrant expression of AD biomarkers in the cerebrospinal fluid and blood of patients with COVID-19. While transcriptomic analyses showed relatively low expression of SARS-CoV-2 entry factors in human brain, neuroinflammatory changes were pronounced. In addition, single-nucleus transcriptomic analyses showed that expression of SARS-CoV-2 host factors (BSG and FURIN) and antiviral defense genes (LY6E, IFITM2, IFITM3, and IFNAR1) was significantly elevated in brain endothelial cells of AD patients and healthy controls relative to neurons and other cell types, suggesting a possible role for brain microvascular injury in COVID-19-mediated cognitive impairment. Notably, individuals with the AD risk allele APOE E4/E4 displayed reduced levels of antiviral defense genes compared to APOE E3/E3 individuals. ConclusionOur results suggest significant mechanistic overlap between AD and COVID-19, strongly centered on neuroinflammation and microvascular injury. These results help improve our understanding of COVID-19-associated neurological manifestations and provide guidance for future development of preventive or treatment interventions.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-407007

ABSTRACT

Sex differences in the risk of SARS-CoV-2 infection have been controversial and the underlying mechanisms of COVID-19 sexual dimorphism remain understudied. Here we inspected sex differences in SARS-CoV-2 positivity, hospitalization, admission to the intensive care unit (ICU), sera immune profiling, and two single-cell RNA-sequencing (snRNA-seq) profiles from nasal tissues and peripheral blood mononuclear cells (PBMCs) of COVID-19 patients with varying degrees of disease severity. Our propensity score-matching observations revealed that male individuals have a 29% increased likelihood of SARS-CoV-2 positivity, with a hazard ration (HR) 1.32 (95% confidence interval [CI] 1.18-1.48) for hospitalization and HR 1.51 (95% CI 1.24-1.84) for admission to ICU. Sera from male patients at hospital admission had decreased lymphocyte count and elevated inflammatory markers (C-reactive protein, procalcitonin, and neutrophils). We found that SARS-CoV-2 entry factors, including ACE2, TMPRSS2, FURIN and NRP1, have elevated expression in nasal squamous cells from males with moderate and severe COVID-19. Cell-cell network proximity analysis suggests possible epithelium-immune cell interactions and immune vulnerability underlying a higher mortality in males with COVID-19. Monocyte-elevated expression of Toll like receptor 7 (TLR7) and Bruton tyrosine kinase (BTK) is associated with severe outcomes in males with COVID-19. These findings provide basis for understanding immune responses underlying sex differences, and designing sex-specific targeted treatments and patient care for COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...