Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
J Dairy Sci ; 107(1): 423-437, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37709030

ABSTRACT

The single-step genomic model has become the golden standard for routine evaluation in livestock species, such as Holstein dairy cattle. The single-step genomic model with direct estimation of marker effects has been proven to be efficient in accurately accounting for millions of genotype records. For diverse applications including frequent genomic evaluation updates on a weekly basis, estimates of the marker effects from the single-step evaluations play a central role in genomic prediction. In this study we focused on exploring the marker effect estimates from the single-step evaluation. Phenotypic, genotypic, and pedigree data were taken from the official evaluation for German dairy breeds in April 2021. A multilactation random regression test-day model was applied to more than 242 million test-day records separately for 4 traits: milk, fat, and protein yields, and somatic cell scores (SCS). Approximately one million genotyped Holstein animals were considered in the single-step genomic evaluations including ∼21 million animals in pedigree. Deregressed multiple across-country breeding values of Holstein bulls having daughters outside Germany were integrated into the national test-day data to increase the reliability of genomic breeding values. To assess the stability and bias of the marker effects of the single-step model, test-day records of the last 4 yr were deleted, and the integrated bulls born in the last 4 yr were truncated from the complete phenotypic dataset. Estimates of the marker effects were shown to be highly correlated, with correlations ∼0.9, between the full and truncated evaluations. Regression slope values of the marker-effect estimates from the full on the truncated evaluations were all close to their expected value, being ∼1.03. Calculated using random regression coefficients of the marker effect estimates, drastically different shapes of the genetic lactation curve were seen for 2 markers on chromosome 14 for the 4 test-day traits. The contribution of individual chromosomes to the total additive genetic variances seemed to follow the polygenic inheritance mode for protein yield and SCS. However, chromosome 14 was found to make an exceptionally large contribution to the total additive genetic variance for milk and fat yields because of markers near the major gene DGAT1. For the first lactation test-day traits, we obtained ∼0 correlations of chromosomal direct genomic values between any pair of the chromosomes; no spurious correlations were found in our analysis, thanks to the large reference population. For trait milk yield, chromosomal direct genomic values appeared to have a large variation in the between-lactation correlations among the chromosomes, especially between first and second or third lactations. The optimal features of the random regression test-day model and the single-step marker model allowed us to track the differences in the shapes of genetic lactation curves down to the individual markers. Furthermore, the single-step random regression test-day model enabled us to better understand the inheritance mode of the yield traits and SCS (e.g., variable chromosomal contributions to the total additive genetic variance and to the genetic correlations between lactations).


Subject(s)
Lactation , Milk , Female , Male , Cattle/genetics , Animals , Reproducibility of Results , Phenotype , Genotype , Lactation/genetics , Milk/metabolism , Models, Genetic
2.
J Dairy Sci ; 105(4): 3306-3322, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35181130

ABSTRACT

Genomic evaluation based on a single-step model uses all available data of phenotype, genotype, and pedigree; therefore, it should provide unbiased genomic breeding values with a higher correlation of prediction than the current multistep genomic model. Since 2019, a mixed reference population of cows and bulls has been applied to the routine multistep genomic evaluation in German Holsteins. For a fair comparison between the single-step and multistep genomic models, the same phenotype, genotype, and pedigree data were used. Because of its simple structure of the standard multitrait animal model used for German Holstein conventional evaluation, conformation traits were chosen as the first trait group to test a single-step SNP BLUP model for the large, genotyped population of German Holsteins. Genotype, phenotype, and pedigree data were taken from the official August 2020 conventional and genomic evaluation. Because of the same trait definition in national and multiple across-country evaluation for the conformation traits, deregressed multiple across-country evaluation estimated breeding value (EBV) of foreign bulls were treated as a new source of data for the same trait in the genomic evaluations. Due to a short history of female genotyping in Germany, the last 3 yr of youngest cows and bulls were deleted, instead of 4 yr, to perform a genomic validation. In comparison to the multistep genomic model, the single-step SNP BLUP model resulted in a higher correlation and greater variance of genomic EBV according to 798 national validation bulls. The regression of genomic prediction of the current, full evaluation on the earlier, truncated evaluation was slightly closer to 1 than the multistep model. For the validation bulls or youngest genomic artificial insemination bulls, correlation of genomic EBV between the 2 models was, on average, 0.95 across all the conformation traits. We did not find overprediction of young animals by the single-step SNP BLUP model for the conformation traits in German Holsteins.


Subject(s)
Genome , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Female , Genomics/methods , Genotype , Male , Models, Genetic , Pedigree , Phenotype
3.
J Dairy Sci ; 99(11): 8915-8931, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27614835

ABSTRACT

Over the last decades, several genetic disorders have been discovered in cattle. However, the genetic background of disorders in calves is less reported. Recently, German cattle farmers reported on calves from specific matings with chronic diarrhea and retarded growth of unknown etiology. Affected calves did not respond to any medical treatment and died within the first months of life. These calves were underdeveloped in weight and showed progressive and severe emaciation despite of normal feed intake. Hallmark findings of the blood biochemical analysis were pronounced hypocholesterolemia and deficiency of fat-soluble vitamins. Results of the clinical and blood biochemical examination had striking similarities with findings reported in human hypobetalipoproteinemia. Postmortem examination revealed near-complete atrophy of the body fat reserves including the spinal canal and bone marrow. To identify the causal region, we performed a genome-wide association study with 9 affected and 21,077 control animals genotyped with the Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA), revealing a strong association signal on BTA 11. Subsequent autozygosity mapping identified a disease-associated haplotype encompassing 1.01 Mb. The segment of extended homozygosity contains 6 transcripts, among them the gene APOB, which is causal for cholesterol disorders in humans. However, results from multi-sample variant calling of 1 affected and 47 unaffected animals did not detect any putative causal mutation. The disease-associated haplotype has an important adverse effect on calf mortality in the homozygous state when comparing survival rates of risk matings vs. non-risk matings. Blood cholesterol values of animals are significantly associated with the carrier status indicating a codominant inheritance. The frequency of the haplotype in the current Holstein population was estimated to be 4.2%. This study describes the identification and phenotypic manifestation of a new Holstein haplotype characterized by pronounced hypocholesterolemia, chronic emaciation, growth retardation, and increased mortality in young cattle, denominated as cholesterol deficiency haplotype. Our genomic investigations and phenotypic examinations provide additional evidence for a mutation within the APOB gene causing cholesterol deficiency in Holstein cattle.


Subject(s)
Cholesterol/deficiency , Genome-Wide Association Study , Haplotypes , Adolescent , Animals , Cattle , Genotype , Homozygote , Humans
4.
J Dairy Sci ; 99(3): 2016-2025, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26723117

ABSTRACT

Routine genomic evaluations in animal breeding are usually based on either a BLUP with genomic relationship matrix (GBLUP) or single nucleotide polymorphism (SNP) BLUP model. For a multi-step genomic evaluation, these 2 alternative genomic models were proven to give equivalent predictions for genomic reference animals. The model equivalence was verified also for young genotyped animals without phenotypes. Due to incomplete linkage disequilibrium of SNP markers to genes or causal mutations responsible for genetic inheritance of quantitative traits, SNP markers cannot explain all the genetic variance. A residual polygenic effect is normally fitted in the genomic model to account for the incomplete linkage disequilibrium. In this study, we start by showing the proof that the multi-step GBLUP and SNP BLUP models are equivalent for the reference animals, when they have a residual polygenic effect included. Second, the equivalence of both multi-step genomic models with a residual polygenic effect was also verified for young genotyped animals without phenotypes. Additionally, we derived formulas to convert genomic estimated breeding values of the GBLUP model to its components, direct genomic values and residual polygenic effect. Third, we made a proof that the equivalence of these 2 genomic models with a residual polygenic effect holds also for single-step genomic evaluation. Both the single-step GBLUP and SNP BLUP models lead to equal prediction for genotyped animals with phenotypes (e.g., reference animals), as well as for (young) genotyped animals without phenotypes. Finally, these 2 single-step genomic models with a residual polygenic effect were proven to be equivalent for estimation of SNP effects, too.


Subject(s)
Genomics , Genotype , Models, Genetic , Animals , Breeding , Genome , Linkage Disequilibrium , Multifactorial Inheritance , Phenotype , Polymorphism, Single Nucleotide , Regression Analysis
5.
J Dairy Sci ; 97(9): 5833-50, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25022678

ABSTRACT

Compared with the currently widely used multi-step genomic models for genomic evaluation, single-step genomic models can provide more accurate genomic evaluation by jointly analyzing phenotypes and genotypes of all animals and can properly correct for the effect of genomic preselection on genetic evaluations. The objectives of this study were to introduce a single-step genomic model, allowing a direct estimation of single nucleotide polymorphism (SNP) effects, and to develop efficient computing algorithms for solving equations of the single-step SNP model. We proposed an alternative to the current single-step genomic model based on the genomic relationship matrix by including an additional step for estimating the effects of SNP markers. Our single-step SNP model allowed flexible modeling of SNP effects in terms of the number and variance of SNP markers. Moreover, our single-step SNP model included a residual polygenic effect with trait-specific variance for reducing inflation in genomic prediction. A kernel calculation of the SNP model involved repeated multiplications of the inverse of the pedigree relationship matrix of genotyped animals with a vector, for which numerical methods such as preconditioned conjugate gradients can be used. For estimating SNP effects, a special updating algorithm was proposed to separate residual polygenic effects from the SNP effects. We extended our single-step SNP model to general multiple-trait cases. By taking advantage of a block-diagonal (co)variance matrix of SNP effects, we showed how to estimate multivariate SNP effects in an efficient way. A general prediction formula was derived for candidates without phenotypes, which can be used for frequent, interim genomic evaluations without running the whole genomic evaluation process. We discussed various issues related to implementation of the single-step SNP model in Holstein populations with an across-country genomic reference population.


Subject(s)
Algorithms , Breeding/methods , Dairying/methods , Genomics/methods , Models, Genetic , Software , Animals , Computer Simulation , Genetic Markers , Genotype , Pedigree , Polymorphism, Single Nucleotide/genetics , Regression Analysis
6.
Reprod Domest Anim ; 48 Suppl 1: 2-10, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23962210

ABSTRACT

Technical advances and development in the market for genomic tools have facilitated access to whole-genome data across species. Building-up on the acquired knowledge of the genome sequences, large-scale genotyping has been optimized for broad use, so genotype information can be routinely used to predict genetic merit. Genomic selection (GS) refers to the use of aggregates of estimated marker effects as predictors which allow improved individual differentiation at young age. Realizable benefits of GS are influenced by several factors and vary in quantity and quality between species. General characteristics and challenges of GS in implementation and routine application are described, followed by an overview over the current status of its use, prospects and challenges in important animal species. Genetic gain for a particular trait can be enhanced by shortening of the generation interval, increased selection accuracy and increased selection intensity, with species- and breed-specific relevance of the determinants. Reliable predictions based on genetic marker effects require assembly of a reference for linking of phenotype and genotype data to allow estimation and regular re-estimation. Experiences from dairy breeding have shown that international collaboration can set the course for fast and successful implementation of innovative selection tools, so genomics may significantly impact the structures of future breeding and breeding programmes. Traits of great and increasing importance, which were difficult to improve in the conventional systems, could be emphasized, if continuous availability of high-quality phenotype data can be assured. Equally elaborate strategies for genotyping and phenotyping will allow tailored approaches to balance efficient animal production, sustainability, animal health and welfare in future.


Subject(s)
Breeding/methods , Selection, Genetic , Animals , Aquaculture , Cattle/genetics , Dairying , Female , Genotyping Techniques/veterinary , Goats/genetics , Horses/genetics , Male , Poultry/genetics , Quantitative Trait Loci/genetics , Sequence Analysis, DNA , Species Specificity , Sus scrofa/genetics
7.
J Dairy Sci ; 95(9): 5403-5411, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22916947

ABSTRACT

With the availability of single nucleotide polymorphism (SNP) marker chips, such as the Illumina BovineSNP50 BeadChip (50K), genomic evaluation has been routinely implemented in dairy cattle breeding. However, for an average dairy producer, total costs associated with the 50K chip are still too high to have all the cows genotyped and genomically evaluated. To study the accuracy of cheaper low-density chips, genotypes were simulated for 2 low-density chips, the Illumina Bovine3K BeadChip (3K) and BovineLD BeadChip (6K), according to their original marker maps. Simulated missing genotypes of the 50K chip were imputed using the programs Beagle and Findhap. Three genotype data sets were used to study imputation accuracy: the EuroGenomics data set, with 14,405 reference bulls (data set I); the smaller EuroGenomics data set, with 11,670 older reference bulls (data set II); and the data set of all genotyped German Holsteins, with 31,597 reference animals (data set III). Imputed genotypes were compared with their original ones to calculate allele error rate for validation animals in the 3 data sets. To evaluate the loss in accuracy of genomic prediction when using imputed genotypes, a genomic evaluation was conducted only for EuroGenomics data set II. Furthermore, combined genome-enhanced breeding values calculated from the original and imputed genotypes were compared. Allele error rate for EuroGenomics data set II was highest for the Findhap program on the 3K chip (3.3%) and lowest for the Beagle program on the 6K chip (0.6%). Across the data sets, Beagle was shown to be about 2 times as accurate as Findhap. Compared with the real 50K genotypes, the reduction in reliability of the genomic prediction when using the imputed genotypes was highest for Findhap on the 3K chip (5.3%) and lowest for Beagle on the 6K chip (1%) when averaged over the 12 evaluated traits. Differences in genome-enhanced breeding values of the original and imputed genotypes were largest for Findhap on the 3K chip, whereas Beagle on the 6K chip had the smallest difference. The low-density chip, 6K, gave markedly higher imputation accuracy and more accurate genomic prediction than the 3K chip. On the basis of the relatively small reduction in accuracy of genomic prediction, we would recommend the BovineLD 6K chip for large-scale genotyping as long as its costs are acceptable to breeders.


Subject(s)
Cattle/genetics , Oligonucleotide Array Sequence Analysis/veterinary , Animals , Breeding/methods , Female , Genotype , Oligonucleotide Array Sequence Analysis/standards , Polymorphism, Single Nucleotide/genetics , Reproducibility of Results
8.
J Dairy Sci ; 94(12): 6143-52, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22118102

ABSTRACT

Because of the relatively high levels of genetic relationships among potential bull sires and bull dams, innovative selection tools should consider both genetic gain and genetic relationships in a long-term perspective. Optimum genetic contribution theory using official estimated breeding values for a moderately heritable trait (production index, Index-PROD), and a lowly heritable functional trait (index for somatic cell score, Index-SCS) was applied to find optimal allocations of bull dams and bull sires. In contrast to previous practical applications using optimizations based on Lagrange multipliers, we focused on semi-definite programming (SDP). The SDP methodology was combined with either pedigree (a(ij)) or genomic relationships (f(ij)) among selection candidates. Selection candidates were 484 genotyped bulls, and 499 preselected genotyped bull dams completing a central test on station. In different scenarios separately for PROD and SCS, constraints on the average pedigree relationships among future progeny were varied from a(ij)=0.08 to a(ij)=0.20 in increments of 0.01. Corresponding constraints for single nucleotide polymorphism-based kinship coefficients were derived from regression analysis. Applying the coefficient of 0.52 with an intercept of 0.14 estimated for the regression pedigree relationship on genomic relationship, the corresponding range to alter genomic relationships varied from f(ij) = 0.18 to f(ij) = 0.24. Despite differences for some bulls in genomic and pedigree relationships, the same trends were observed for constraints on pedigree and corresponding genomic relationships regarding results in genetic gain and achieved coefficients of relationships. Generally, allowing higher values for relationships resulted in an increase of genetic gain for Index-PROD and Index-SCS and in a reduction in the number of selected sires. Interestingly, more sires were selected for all scenarios when restricting genomic relationships compared with restricting pedigree relationships. For example, at constraint of f(ij)=0.185 and selection on Index-PROD, the number of selected sires was 35. In contrast, only 21 sires were selected at the comparable constraint on additive genetic relationship of a(ij)=0.09. A further reduction in relationships is possible when using SDP output (i.e., suggested genetic contributions of selected parents) and applying a simulated annealing algorithm to define specific mating plans. However, the advantage of this strategy is limited to a short-term perspective and probably not successful in the period of genomic selection allowing a substantial reduction of generation intervals.


Subject(s)
Breeding/methods , Cattle/genetics , Inbreeding/methods , Pedigree , Algorithms , Animals , Female , Genome/genetics , Genotype , Male
9.
J Dairy Sci ; 94(4): 2071-82, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21426998

ABSTRACT

Several arguments exist for breeding organizations to focus on cooperative herds for progeny testing, but an efficient methodology addressing herd selection strategies is lacking. In this study, a new approach based on yield deviations (YD) to identify the most informative cooperator herds in terms of genetic differentiation was evaluated. Data comprised YD from 717,377 first-lactation cows from 2 regions in East and West Germany calving between January 2003 and January 2008. Daughters were ranked and classified within sire according to their YD for protein yield, fat yield, milk yield, and somatic cell score. Cows in created YD classes were merged with respective herd-calving year (HCY) characteristics. Cows of extreme YD classes (i.e., such classes including the most extreme daughter contributions), belonged to herds characterized by a high HCY production level, a low value for HCY somatic cell count, and a low HCY age at first calving (AFC). Cows with low extremes for YD in protein yield were associated with the lowest HCY production level, a high value for HCY somatic cell count, and a late HCY AFC. Ranks of HCY and ranks of herds considering HCY over the whole analyzed period were calculated by averaging YD percentages within HCY, and within herds, respectively. The YD percentages (in absolute values so that negative and positive daughter contributions were treated equally) were derived from the rank of the YD of a daughter within sire in relation to all daughters of a sire. A further partitioning of ranks of herds into quartiles revealed the following results: herds in the first quartile had the highest average protein yield, the highest intra-herd standard deviation for the national production index, and the lowest AFC. Correlations between herd rankings for different production traits ranged between 0.64 and 0.86, and were 0.65 for West Germany and 0.62 for East Germany between HCY 2006 and the average herd rank of all calving years. Correlations between daughter yield deviations for the highest and the lowest herd quartile of 0.87 for protein yield disproved concerns regarding genotype by environment interaction between test and production environment. The suggested methodology to identify informative cooperator herds is easy to implement, holds for regions with small herd sizes, and thus, may help in implementing sustainable and competitive dairy cattle breeding programs.


Subject(s)
Breeding/methods , Cattle/physiology , Lactation/physiology , Reproduction/physiology , Selection, Genetic , Animals , Cattle/genetics , Dietary Fats/analysis , Female , Milk/chemistry , Milk/cytology , Milk/metabolism , Milk Proteins/analysis
10.
Animal ; 3(7): 925-32, 2009 Jul.
Article in English | MEDLINE | ID: mdl-22444812

ABSTRACT

Binational genetic evaluation between Germany and France were performed for each type trait using a single-trait MACE (multiple across-country evaluation) model. Daughter yield deviations (DYD) of bulls having 30 equivalent daughter contributions or more were the data for parameter estimation. Full pedigree information of bulls was used via sire and dam relationships. In general, across-country genetic correlation estimates were in agreement with what is observed by Interbull. The estimated correlations were over 0.93 for stature, rump angle, udder depth, front teat placement, teat length and rear teat placement. These traits have been classified in both countries for a long period of time. However, some other type traits were included later in the French type classification system (most of them since 2000): chest width, body depth, angularity, rump width, rear leg rear view, fore udder and rear udder height. The estimated correlations for these traits were relatively low. In order to check changes in genetic correlations over time, data from bulls born until the end of 1995 were discarded. Higher genetic correlation estimates between both countries were obtained by using more recent data especially for traits having lower genetic correlation, e.g. body depth correlation increased from 0.55 to 0.83. Once genetic correlations were estimated, binational genetic evaluation between Germany and France were performed for each type trait using DYD of bulls. The rankings of bulls obtained from this evaluation had some differences with Interbull rankings but a similar proportion of bulls from each country was found. Finally, more computationally demanding binational evaluations were performed using yield deviations of cows for binational cow comparison. The rankings obtained were influenced by the number of daughters per bull and heritabilities used in each country.

11.
J Dairy Sci ; 91(11): 4333-43, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18946139

ABSTRACT

A genetic evaluation system was developed for 5 fertility traits of dairy cattle: interval from first to successful insemination and nonreturn rate to 56 d of heifers, and interval from calving to first insemination, nonreturn rate to 56 d, and interval first to successful insemination of cows. Using the 2 interval traits of cows as components, breeding values for days open were derived. A multiple-trait animal model was applied to evaluate these fertility traits. Fertility traits of later lactations of cows were treated as repeated measurements. Genetic parameters were estimated by REML. Mixed model equations of the genetic evaluation model were solved with preconditioned conjugate gradients or the Gauss-Seidel algorithm and iteration on data techniques. Reliabilities of estimated breeding values were approximated with a multi-trait effective daughter contribution method. Daughter yield deviations and associated effective daughter contributions were calculated with a multiple trait approach. The genetic evaluation software was applied to the insemination data of dairy cattle breeds in Germany, Austria, and Luxembourg, and it was validated with various statistical methods. Genetic trends were validated. Small heritability estimates were obtained for all the fertility traits, ranging from 1% for nonreturn rate of heifers to 4% for interval calving to first insemination. Genetic and environmental correlations were low to moderate among the traits. Notably, unfavorable genetic trends were obtained in all the fertility traits. Moderate to high correlations were found between daughter yield-deviations and estimated breeding values (EBV) for Holstein bulls. Because of much lower heritabilities of the fertility traits, the correlations of daughter yield deviations with EBV were significantly lower than those from production traits and lower than the correlations from type traits and longevity. Fertility EBV were correlated unfavorably with EBV of milk production traits but favorably with udder health and longevity. Integrating fertility traits into a total merit selection index can halt or reverse the decline of fertility and improve the longevity of dairy cattle.


Subject(s)
Cattle/genetics , Dairying , Fertility/genetics , Models, Genetic , Animals , Female , Male , Phenotype , Pregnancy
12.
J Dairy Sci ; 90(10): 4846-55, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17881708

ABSTRACT

A multitrait, multiple across-country evaluation (MT-MACE) model permitting a variable number of correlated traits per country allows international genetic evaluation models to more closely match national models. Before the MT-MACE evaluation can be applied, genetic (co)variance components within and across country must be estimated. An approximate REML algorithm for parameter estimation was developed and was validated via simulation. This method is based on the expectation maximization REML (EM-REML) algorithm. Because obtaining the inverse of co-efficient matrix is not usually feasible for large amounts of data, an algorithm using the multiple-trait effective daughter contribution (EDC) is proposed to provide approximate diagonal elements of the inverse matrix. The accuracy of the approximate EM-REML was tested with simulated data and compared with an average information REML (AI-REML) from available software. Two simulation studies were performed. First, data of 2 countries were simulated using a single-trait model. Estimates of across-country genetic correlations with the developed algorithm were unbiased and very precise. The precision, however, depended on the percentage of bulls with data in both countries. The results obtained with the approximate EM-REML software were very close to those obtained with the AI-REML software regarding estimated genetic correlations and bulls' estimated breeding values. The second simulation assumed a multiple trait model and the same number of traits, pedigree structure, EDC, and pattern of missing records as for actual observations for milk yield obtained from French and German national Holstein evaluations. As with the single-trait scenarios, the approximate EM-REML gave nearly unbiased and very precise estimates of within- and across-country genetic correlations. The results obtained in both simulation studies confirmed the suitability of the MT-MACE model and approximate EM-REML software in a wide range of situations. Even when the genetic trend was incorrectly estimated by the national evaluations, a joint analysis including a time effect in the MT-MACE model adequately corrected for this bias.


Subject(s)
Algorithms , Breeding , Cattle/genetics , Computer Simulation , Models, Genetic , Animals , Female , Genetic Variation , Germany , International Cooperation , Lactation/physiology , Male , Time Factors
13.
J Dairy Sci ; 88(1): 356-67, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15591400

ABSTRACT

The main objective of this study was to estimate the proportion of total genetic variance attributed to a quantitative trait locus (QTL) on Bos taurus autosome 6 (BTA6) for milk production traits in the German Holstein dairy cattle population. The analyzed chromosomal region on BTA6 spanned approximately 70 cM, and contained 6 microsatellite markers. Milk production data were obtained from routine genetic evaluation for 4500 genotyped German Holstein bulls. Technical aspects related to the estimation of model parameters for a large data set from routine genotype recording were outlined. A fixed QTL model and a random QTL model were introduced to incorporate marker information into parameter estimation and genetic evaluation. Estimated QTL variances, expressed as the ratio of QTL to polygenic variances, were 0.04, 0.03, and 0.07 for milk yield; 0.06, 0.08, and 0.14 for fat yield; and 0.04, 0.04, and 0.11 for protein yield, in the first 3 parities, respectively. The estimated QTL positions, expressed as distances from the leftmost marker DIK82, were 18, 31, and 17 cM for milk yield; 25, 17, and 9 cM for fat yield; and 16, 30, and 17 cM for protein yield in the 3 respective parities. Because the data for the parameter estimation well represented the current population of active German Holstein bulls, the QTL parameter estimates have been used in routine marker-assisted genetic evaluation for German Holsteins.


Subject(s)
Cattle/genetics , Lactation/genetics , Quantitative Trait Loci/genetics , Analysis of Variance , Animals , Breeding , Chromosome Mapping , Female , Genetic Variation , Genotype , Germany , Lipids/analysis , Male , Milk/chemistry
14.
J Dairy Sci ; 87(6): 1896-907, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15453507

ABSTRACT

Test-day milk, fat, protein yield, and somatic cell score (SCS) were analyzed separately using data from the first 3 lactations and a random regression model. Data used in the model were from Austria, Germany, and Luxembourg and from Holstein, Red, and Jersey dairy cattle. For reliability approximation, a multiple-trait effective daughter contribution (MTEDC) method was developed under general multiple trait models, including random regression test-day models, by extending the single-trait daughter equivalents concept. The MTEDC was applied to the very large dairy population, with about 15.5 million animals. The calculation of reliabilities required less computer memory than the corresponding iteration program and a significantly lower computing time equivalent to 24 rounds of iteration. A formula for daughter-yield deviations was derived for bulls under multiple-trait models. Reliability associated with daughter-yield deviations was approximated using the MTEDC method. Both the daughter-yield deviation formula and associated reliability method were verified in a simulation study using the random regression test-day model. Correlations of lactation daughter-yield deviations with estimated breeding values calculated from a routine genetic evaluation were 0.996 for all bulls and 0.95 for young bulls having only daughters with short lactations.


Subject(s)
Cattle/genetics , Lactation/genetics , Milk/chemistry , Milk/cytology , Models, Genetic , Analysis of Variance , Animals , Breeding , Cattle/physiology , Cell Count/veterinary , Fats/metabolism , Female , Lactation/physiology , Milk Proteins/metabolism , Regression Analysis
15.
J Dairy Sci ; 87(6): 1925-33, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15453510

ABSTRACT

Test-day genetic evaluation models have many advantages compared with those based on 305-d lactations; however, the possible use of test-day model (TDM) results for herd management purposes has not been emphasized. The aim of this paper was to study the ability of a TDM to predict production for the next test day and for the entire lactation. Predictions of future production and detection of outliers are important factors for herd management (e.g., detection of health and management problems and compliance with quota). Because it is not possible to predict the herd-test-day (HTD) effect per se, the fixed HTD effect was split into 3 new effects: a fixed herd-test month-period effect, a fixed herd-year effect, and a random HTD effect. These new effects allow the prediction of future production for improvement of herd management. Predicted test-day yields were compared with observed yields, and the mean prediction error computed across herds was found to be close to zero. Predictions of performance records at the herd level were even more precise. Discarding herds enrolled in milk recording for <1 yr and animals with very few tests in the evaluation file improved correlations between predicted and observed yields at the next test day (correlation of 0.864 for milk in first-lactation cows as compared with a correlation of 0.821 with no records eliminated). Correlations with the observed 305-d production ranged from 0.575 to 1 for predictions based on 0 to 10 test-day records, respectively. Similar results were found for second and third lactation records for milk and milk components. These findings demonstrate the predictive ability of a TDM.


Subject(s)
Cattle/genetics , Lactation/genetics , Lipids/analysis , Milk Proteins/analysis , Milk/chemistry , Animals , Breeding , Cattle/physiology , Female , Lactation/physiology , Milk/metabolism , Models, Genetic , Models, Statistical , Predictive Value of Tests , Regression Analysis
16.
J Dairy Sci ; 87(2): 431-42, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14762086

ABSTRACT

The gene, acyl-CoA:diacylglycerol acyltransferase1 (DGAT1), was recently identified as the one underlying the quantitative trait locus (QTL) for milk production traits in the centromeric region of the bovine chromosome 14. Until now, 2 alleles, the lysine variant (increasing fat yield, fat and protein percentage) and the alanine variant (increasing protein and milk yield), were postulated at DGAT1. This study investigated whether the diallelic DGAT1 polymorphism is responsible for all the genetic variation at the centromeric region of this chromosome for milk, fat, and protein yield and fat and protein percentage. A statistical model was applied to a granddaughter design to analyze 16 German Holstein families. The model included the diallelic DGAT1 effect and the QTL transition probability estimated for each chromosomal position by a multiple marker approach. Because the regression coefficient of this probability was corrected for the diallelic DGAT1 polymorphism, it represented a putative conditional QTL effect. The effect of the DGAT1 gene was always highly significant. The conditional QTL effect was significant genomewise for fat percentage at the proximal end of the chromosome and for protein percentage at a more distal chromosomal region. Additional chromosomewise significance was found for fat and protein yield. Our results suggest an additional source of genetic variance on this chromosome for these traits; either one or more additional alleles segregating at DGAT1 that were not previously detected, a second quantitative trait locus affecting these traits, or both.


Subject(s)
Acyltransferases/genetics , Cattle/genetics , Lactation/genetics , Mutation , Quantitative Trait Loci/genetics , Alleles , Animals , Diacylglycerol O-Acyltransferase , Female , Lipids/analysis , Milk/chemistry , Milk Proteins/analysis , Models, Statistical
17.
J Hered ; 94(6): 496-506, 2003.
Article in English | MEDLINE | ID: mdl-14691316

ABSTRACT

Genome scans for quantitative trait loci (QTL) in farm animals have concentrated on primary production and health traits, and information on QTL for other important traits is rare. We performed a whole genome scan in a granddaughter design to detect QTL affecting body conformation and behavior in dairy cattle. The analysis included 16 paternal half-sib families of the Holstein breed with 872 sons and 264 genetic markers. The markers were distributed across all 29 autosomes and the pseudoautosomal region of the sex chromosomes with average intervals of 13.9 cM and covering an estimated 3155.5 cM. All families were analyzed jointly for 22 traits using multimarker regression and significance thresholds determined empirically by permutation. QTL that exceeded the experiment-wise significance threshold (5% level) were detected on chromosome 6 for foot angle, teat placement, and udder depth, and on chromosome 29 for temperament. QTL approaching experiment-wise significance (10% level) were located on chromosome 6 for general quality of feet and legs and general quality of udder, on chromosome 13 for teat length, on chromosome 23 for general quality of feet and legs, and on chromosome 29 for milking speed. An additional 51 QTL significant at the 5% chromosome-wise level were distributed over 21 chromosomes. This study provides the first evidence for QTL involved in behavior of dairy cattle and identifies QTL for udder conformation on chromosome 6 that could form the basis of recently reported QTL for clinical mastitis.


Subject(s)
Cattle/genetics , Chromosome Mapping , Quantitative Trait Loci , Animals , Behavior, Animal , Cattle/anatomy & histology , Cattle/physiology , Genetic Markers/genetics , Quantitative Trait, Heritable
18.
J Dairy Sci ; 86(1): 360-8, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12613879

ABSTRACT

A whole-genome scan to detect quantitative trait loci (QTL) for functional traits was performed in the German Holstein cattle population. For this purpose, 263 genetic markers across all autosomes and the pseudoautosomal region of the sex chromosomes were genotyped in 16 granddaughter-design families with 872 sons. The traits investigated were deregressed breedingvalues for maternal and direct effects on dystocia (DYSm, DYSd) and stillbirth (STIm, STId) as well as maternal and paternal effects on nonreturn rates of 90 d (NR90m, NR90p). Furthermore, deregressed breeding values for functional herd life (FHL) and daughter yield deviation for somatic cell count (SCC) were investigated. Weighted multimarker regression analyses across families and permutation tests were applied for the detection of QTL and the calculation of statistical significance. A ten percent genomewise significant QTL was localized for DYSm on chromosome 8 and for SCC on chromosome 18. A further 24 putative QTL exceeding the 5% chromosomewise threshold were detected. On chromosomes 7, 8, 10, 18, and X/Yps, coincidence of QTL for several traits was observed. Our results suggest that loci with influence on udder health may also contribute to genetic variance of longevity. Prior to implementation of these QTL in marker assisted selection programs for functional traits, information about direct and correlated effects of these QTL as well as fine mapping of their chromosomal positions is required.


Subject(s)
Cattle/genetics , Genome , Lactation/genetics , Pregnancy, Animal/genetics , Quantitative Trait Loci , Animals , Cattle/physiology , Cell Count/veterinary , Chromosome Mapping , Dystocia/genetics , Dystocia/veterinary , Female , Fetal Death/genetics , Fetal Death/veterinary , Genetic Markers , Genotype , Male , Milk/cytology , Pregnancy , Pregnancy Outcome , Regression Analysis , Reproduction/genetics , Sex Chromosomes/genetics
19.
Anim Genet ; 33(2): 107-17, 2002 Apr.
Article in English | MEDLINE | ID: mdl-12047223

ABSTRACT

Genes determining the bovine erythrocyte antigens were mapped by linkage analysis. In total 9591 genotypes of 20 grandsire families with 1074 sires from a grand-daughter design were elucidated for the genes determining the erythrocyte antigens EAA, EAB, EAC, EAF, EAJ, EAL, EAM, EAN', EAR', EAS, EAT', and EAZ according to standard paternity testing procedures in the blood typing laboratories. Linkage analyses were performed with 248 microsatellite markers, eight SSCP markers and four polymorphic proteins and enzymes covering the 29 autosomes and the pseudoautosomal region of the sex chromosomes. The number of informative meioses for the blood group systems ranged from 76 to 947. Blood group systems EAM and EAT' were non-informative. Most of the erythrocyte antigen loci showed significant linkage to a single chromosome and were mapped unequivocally. The genes determining erythrocyte antigen EAA, EAB, EAC, EAL, and EAS were mapped to chromosomes 15, 12, 18, 3, and 21, respectively. Lod-score values ranged from 11.43 to 107.83. Moreover, the EAF system could be mapped to chromosome 17. However, the EAN' system previously known as part of the EAF system could be mapped to chromosome 5. In addition, the blood group systems EAJ, the new EAN', EAR', and EAZ, showed significant linkage to microsatellite markers on various chromosomes and also to other blood groups. The appearance of a single blood group system might be therefore either dependent on the existence of other blood group systems or because of an interaction between different loci on various chromosomes as is known in humans and in pigs.


Subject(s)
Blood Group Antigens/genetics , Cattle/blood , Chromosome Mapping , Swine/genetics , Animals , Cattle/genetics , Genetic Linkage , Genetic Markers , Humans , Microsatellite Repeats , Polymorphism, Single-Stranded Conformational , Swine/blood
20.
Mamm Genome ; 12(9): 724-8, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11641721

ABSTRACT

Twenty paternal half-sib families of a granddaughter design were genotyped for 265 genetic markers, most of them microsatellites. These were 16 Holstein families, 3 Simmental families, and 1 Brown Swiss family. The number of sires per breed was 872, 170, and 32, respectively. Two-point recombination rates were estimated both jointly for all breeds and each single breed separately. Of 1168 marker intervals, 865 provided estimates for at least two breeds. Differences between breeds were tested by likelihood ratio tests. Four marker intervals, representing three genomic regions on BTA19, BTA24, and BTA27, show a significant impact of the breed at a false discovery rate of 0.23 and indicate a genetic component of observed heterogeneity of recombination. The variability of recombination rates between cattle breeds might not be a common feature of the whole genome, but rather might be restricted to certain chromosomal segments. Thus, attention should be paid to heterogeneities when pooling data of such regions from different breeds.


Subject(s)
Breeding/methods , Cattle/genetics , Chromosome Mapping/methods , Recombination, Genetic/genetics , Animals , Crosses, Genetic , Female , Genetic Linkage , Genetic Markers , Genotype , Meiosis , Microsatellite Repeats , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...