Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 127(15): 157405, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34678039

ABSTRACT

Despite the fundamental nature of the edge state in topological physics, direct measurement of electronic and optical properties of the Fermi arcs of topological semimetals has posed a significant experimental challenge, as their response is often overwhelmed by the metallic bulk. However, laser-driven currents carried by surface and bulk states can propagate in different directions in nonsymmorphic crystals, allowing for the two components to be easily separated. Motivated by a recent theoretical prediction G. Chang et al., Phys. Rev. Lett. 124, 166404 (2020)PRLTAO0031-900710.1103/PhysRevLett.124.166404, we have measured the linear and circular photogalvanic effect currents deriving from the Fermi arcs of the nonsymmorphic, chiral Weyl semimetal RhSi over the 0.45-1.1 eV incident photon energy range. Our data are in good agreement with the predicted spectral shape of the circular photogalvanic effect as a function of photon energy, although the direction of the surface photocurrent departed from the theoretical expectation over the energy range studied. Surface currents arising from the linear photogalvanic effect were observed as well, with the unexpected result that only two of the six allowed tensor element were required to describe the measurements, suggesting an approximate emergent mirror symmetry inconsistent with the space group of the crystal.

2.
IEEE Trans Vis Comput Graph ; 27(9): 3626-3643, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32305921

ABSTRACT

Glyphs representing complex behavior provide a useful and common means of visualizing multivariate data. However, due to their complex shape, overlapping, and occlusion of glyphs is a common and prominent limitation. This limits the number of discreet data tuples that can be displayed in a given image. Using a real-world application, glyphs are used to depict agent behavior in a call center. However, many call centers feature thousands of agents. A standard approach representing thousands of agents with glyphs does not scale. To accommodate the visualization incorporating thousands of glyphs we develop clustering of overlapping glyphs into a single parent glyph. This hierarchical glyph represents the mean value of all child agent glyphs, removing overlap and reduTcing visual clutter. Multi-variate clustering techniques are explored and developed in collaboration with domain experts in the call center industry. We implement dynamic control of glyph clusters according to zoom level and customized distance metrics, to utilize image space with reduced overplotting and cluttering. We demonstrate our technique with examples and a usage scenario using real-world call-center data to visualize thousands of call center agents, revealing insight into their behavior and reporting feedback from expert call-center analysts.

3.
Sci Adv ; 6(29): eaba0509, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32832618

ABSTRACT

Weyl semimetals are crystals in which electron bands cross at isolated points in momentum space. Associated with each crossing point (or Weyl node) is a topological invariant known as the Berry monopole charge. The circular photogalvanic effect (CPGE), whereby circular polarized light generates a helicity-dependent photocurrent, is a notable example of a macroscopic property that emerges directly from the topology of the Weyl semimetal band structure. Recently, it was predicted that the amplitude of the CPGE associated with optical transitions near a Weyl node is proportional to its monopole charge. In chiral Weyl systems, nodes of opposite charge are nondegenerate, opening a window of wavelengths where the CPGE resulting from uncompensated Berry charge can emerge. Here, we report measurements of CPGE in the chiral Weyl semimetal RhSi, revealing a CPGE response in an energy window that closes at 0.65 eV, in agreement with the predictions of density functional theory.

4.
Nat Mater ; 19(10): 1062-1067, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32424369

ABSTRACT

Nematic order is the breaking of rotational symmetry in the presence of translational invariance. While originally defined in the context of liquid crystals, the concept of nematic order has arisen in crystalline matter with discrete rotational symmetry, most prominently in the tetragonal Fe-based superconductors where the parent state is four-fold symmetric. In this case the nematic director takes on only two directions, and the order parameter in such 'Ising-nematic' systems is a simple scalar. Here, using a spatially resolved optical polarimetry technique, we show that a qualitatively distinct nematic state arises in the triangular lattice antiferromagnet Fe1/3NbS2. The crucial difference is that the nematic order on the triangular lattice is a [Formula: see text] or three-state Potts-nematic order parameter. As a consequence, the anisotropy axes of response functions such as the resistivity tensor can be continuously reoriented by external perturbations. This discovery lays the groundwork for devices that exploit analogies with nematic liquid crystals.

5.
Nat Photonics ; 12(2): 73-78, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29910828

ABSTRACT

When a polarized light beam is incident upon the surface of a magnetic material, the reflected light undergoes a polarization rotation1. This magneto-optical Kerr effect (MOKE) has been intensively studied in a variety of ferro- and ferrimagnetic materials because it provides a powerful probe for electronic and magnetic properties2, 3 as well as for various applications including magneto-optical recording4. Recently, there has been a surge of interest in antiferromagnets (AFMs) as prospective spintronic materials for high-density and ultrafast memory devices, owing to their vanishingly small stray field and orders of magnitude faster spin dynamics compared to their ferromagnetic counterparts5-9. In fact, the MOKE has proven useful for the study and application of the antiferromagnetic (AF) state. Although limited to insulators, certain types of AFMs are known to exhibit a large MOKE, as they are weak ferromagnets due to canting of the otherwise collinear spin structure10-14. Here we report the first observation of a large MOKE signal in an AF metal at room temperature. In particular, we find that despite a vanishingly small magnetization of M ~0.002 µB/Mn, the non-collinear AF metal Mn3Sn15 exhibits a large zero-field MOKE with a polar Kerr rotation angle of 20 milli-degrees, comparable to ferromagnetic metals. Our first-principles calculations have clarified that ferroic ordering of magnetic octupoles in the non-collinear Néel state16 may cause a large MOKE even in its fully compensated AF state without spin magnetization. This large MOKE further allows imaging of the magnetic octupole domains and their reversal induced by magnetic field. The observation of a large MOKE in an AF metal should open new avenues for the study of domain dynamics as well as spintronics using AFMs.

SELECTION OF CITATIONS
SEARCH DETAIL
...