Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(7): e70047, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39035041

ABSTRACT

Climate change is projected to increase the frequency and intensity of extreme heat events, and may increase humidity levels, leading to coupled thermal and hydric stress. However, how humidity modulates the impacts of heat stress on species and their interactions is currently unknown. Using an insect host-parasitoid interaction: the Indian meal moth, Plodia interpunctella, and its endoparasitoid wasp, Venturia canescens, we investigated how humidity interacted with heat stress duration, applied at different host developmental stages, to affect life history traits. Hosts parasitized as 4th instar larvae and unparasitized hosts were maintained in high- (60.8% RH) or low-humidity (32.5% RH) at constant 28°C. They were then exposed to a 38°C thermal stress with a duration of 0 (no heat stress), 6 or 72 h in either the 4th or 5th host instar. Neither humidity nor heat stress duration affected emergence of unparasitized hosts, but increasing heat stress duration during the 4th instar decreased parasitoid emergence irrespective of humidity. When applied during the 5th instar, increasing heat duration decreased parasitoid emergence under low humidity, but no effect of heat stress was found under high humidity. Moreover, experiencing longer heat stress in the 4th instar increased host larval development time and decreased body size under high humidity, but this effect differed under low humidity; increasing heat duration in the 5th instar decreased parasitoid body sizes only under low humidity. Larval stage and heat stress duration directly affected parasitized host survival time, with a concomitant indirect reduction of parasitoid sizes. We show that humidity modifies key life history responses of hosts and parasitoids to heat stress in species-specific ways, highlighting the potential importance of humidity in regulating host-parasitoid interactions and their population dynamics. Finally, we emphasize that interactions between environmental stressors need to be considered in climate change research.

SELECTION OF CITATIONS
SEARCH DETAIL
...