Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 68(16): 6680-7, 2008 Aug 15.
Article in English | MEDLINE | ID: mdl-18701492

ABSTRACT

Recepteur d'origine nantais (RON) is a receptor tyrosine kinase closely related to c-Met. Both receptors are involved in cell proliferation, migration, and invasion, and there is evidence that both are deregulated in cancer. Receptor overexpression has been most frequently described, but other mechanisms can lead to the oncogenic activation of RON and c-Met. They include activating mutations or gene amplification for c-Met and constitutively active splicing variants for RON. We identified a novel inhibitor of RON and c-Met, compound I, and characterized its in vitro and in vivo activities. Compound I selectively and potently inhibited the kinase activity of RON and c-Met with IC(50)s of 9 and 4 nmol/L, respectively. Compound I inhibited hepatocyte growth factor-mediated and macrophage-stimulating protein-mediated signaling and cell migration in a dose-dependent manner. Compound I was tested in vivo in xenograft models that either were dependent on c-Met or expressed a constitutively active form of RON (RONDelta160 in HT-29). Compound I caused complete tumor growth inhibition in NIH3T3 TPR-Met and U-87 MG xenografts but showed only partial inhibition in HT-29 xenografts. The effect of compound I in HT-29 xenografts is consistent with the expression of the activating b-Raf V600E mutation, which activates the mitogen-activated protein kinase pathway downstream of RON. Importantly, tumor growth inhibition correlated with the inhibition of c-Met-dependent and RON-dependent signaling in tumors. Taken together, our results suggest that a small-molecule dual inhibitor of RON/c-Met has the potential to inhibit tumor growth and could therefore be useful for the treatment of patients with cancers where RON and/or c-Met are activated.


Subject(s)
Colonic Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyrazoles/pharmacology , Quinolines/pharmacology , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Blotting, Western , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Female , Humans , Immunoprecipitation , Mice , Mice, Nude , Molecular Structure , NIH 3T3 Cells , Phosphorylation , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-met/metabolism , Pyrazoles/chemical synthesis , Quinolines/chemical synthesis , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction , Xenograft Model Antitumor Assays
2.
J Med Chem ; 51(10): 2879-82, 2008 May 22.
Article in English | MEDLINE | ID: mdl-18426196

ABSTRACT

Tumorigenesis is a multistep process in which oncogenes play a key role in tumor formation, growth, and maintenance. MET was discovered as an oncogene that is activated by its ligand, hepatocyte growth factor. Deregulated signaling in the c-Met pathway has been observed in multiple tumor types. Herein we report the discovery of potent and selective triazolopyridazine small molecules that inhibit c-Met activity.


Subject(s)
Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyridazines/chemical synthesis , Triazoles/chemical synthesis , Animals , Crystallography, X-Ray , Hepatocyte Growth Factor/physiology , In Vitro Techniques , Mice , Microsomes, Liver/metabolism , Models, Molecular , Molecular Structure , Phosphorylation , Proto-Oncogene Proteins c-met/chemistry , Proto-Oncogene Proteins c-met/metabolism , Pyridazines/chemistry , Pyridazines/pharmacokinetics , Pyridazines/pharmacology , Rats , Structure-Activity Relationship , Triazoles/chemistry , Triazoles/pharmacokinetics , Triazoles/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...