Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 29(7): 1161-1168.e6, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30880010

ABSTRACT

In eukaryotes, genome size correlates little with the number of coding genes or the level of organismal complexity (C-value paradox). The underlying causes of variations in genome size, whether adaptive or neutral, remain unclear, although several biological traits often covary with it [1-5]. Rapid increases in genome size occur mainly through whole-genome duplications or bursts in the activity of transposable elements (TEs) [6]. The very small and compact genome of Oikopleura dioica, a tunicate of the larvacean class, lacks elements of most ancient families of animal retrotransposons [7, 8]. Here, we sequenced the genomes of six other larvaceans, all of which are larger than that of Oikopleura (up to 12 times) and which increase in size with greater body length. Although no evidence was found for whole-genome duplications within the group of species, the global amount of TEs strongly correlated with genome size. Compared to other metazoans, however, the TE diversity was reduced in all species, as observed previously in O. dioica, suggesting a common ancestor with a compacted genome. Strikingly, non-autonomous elements, particularly short interspersed nuclear elements (SINEs), massively contributed to genome size variation through species-specific independent amplifications, ranging from 3% in the smallest genome up to 49% in the largest. Variations in SINE abundance explain as much as 83% of interspecific genome size variation. These data support an indirect influence of autonomous TEs on genome size via their ability to mobilize non-autonomous elements.


Subject(s)
DNA Transposable Elements/genetics , Genome Size , Urochordata/genetics , Animals , Short Interspersed Nucleotide Elements/genetics , Species Specificity
2.
PLoS One ; 13(1): e0190625, 2018.
Article in English | MEDLINE | ID: mdl-29298334

ABSTRACT

Ocean warming and acidification (OA) may alter the fitness of species in marine pelagic ecosystems through community effects or direct physiological impacts. We used the zooplanktonic appendicularian, Oikopleura dioica, to assess temperature and pH effects at mesocosm and microcosm scales. In mesocosms, both OA and warming positively impacted O. dioica abundance over successive generations. In microcosms, the positive impact of OA, was observed to result from increased fecundity. In contrast, increased pH, observed for example during phytoplankton blooms, reduced fecundity. Oocyte fertility and juvenile development were equivalent under all pH conditions, indicating that the positive effect of lower pH on O. dioica abundance was principally due to increased egg number. This effect was influenced by food quantity and quality, supporting possible improved digestion and assimilation at lowered pH. Higher temperature resulted in more rapid growth, faster maturation and earlier reproduction. Thus, increased temperature and reduced pH had significant positive impacts on O. dioica fitness through increased fecundity and shortened generation time, suggesting that predicted future ocean conditions may favour this zooplankton species.


Subject(s)
Acids/metabolism , Seawater , Zooplankton/physiology , Animals , Ecosystem , Hot Temperature , Hydrogen-Ion Concentration
3.
Thyroid ; 18(7): 735-46, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18631002

ABSTRACT

BACKGROUND: Human monoclonal autoantibodies (MAbs) are valuable tools to study autoimmune responses. To date only one human MAb to the thyrotropin (TSH) receptor (TSHR) with stimulating activity has been available. We now describe the detailed characterization of a blocking type human MAb to the TSHR. METHODS: A single heterohybridoma cell line was isolated from the peripheral blood lymphocytes of a patient with severe hypothyroidism (TSH 278 mU/L) using standard techniques. The line stably expresses a TSHR autoantibody (5C9; IgG1/kappa). Ability of 5C9 to bind and compete with 125I-TSH or TSHR antibodies binding to the TSHR was tested using tubes coated with solubilized TSHR. Furthermore, the blocking effects of 5C9 on stimulation of cyclic AMP production was assessed using Chinese hamster ovary (CHO) cells expressing the wild-type human TSHR or TSHRs with amino acid mutations. MAIN OUTCOME: 5C9 IgG bound to the TSHR with high affinity (4 x 10(10) L/mol) and inhibited binding of TSH and a thyroid-stimulating human monoclonal autoantibody (M22) to the receptor. 5C9 IgG preparations inhibited the cyclic AMP-stimulating activities of TSH, M22, serum TSHR autoantibodies and thyroid-stimulating mouse monoclonal antibodies. Furthermore 5C9 reduced the constitutive activity of wild-type TSHR and TSHR with some activating mutations. The effect of different amino acid mutations in the TSHR on 5C9 biological activity was studied and TSHR Lys129Ala or Asp203Ala completely abolished the ability of 5C9 to block TSH-mediated stimulation of cyclic AMP production. CONCLUSIONS: The availability of 5C9 provides new opportunities to investigate the binding and biological activity of TSHR blocking type autoantibodies including studies at the molecular level. Furthermore, monoclonal antibodies such as 5C9 may well provide the basis of new drugs to control TSHR activity including applications in thyroid cancer and Graves' ophthalmopathy.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Receptors, Thyrotropin/immunology , Thyroid Gland/drug effects , Adult , Animals , Antibodies, Monoclonal/therapeutic use , Autoantibodies/blood , CHO Cells , Cell Line , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Female , Graves Ophthalmopathy/drug therapy , Humans , Hypothyroidism/metabolism , Mutation/genetics , Ovary/cytology , Ovary/drug effects , Ovary/metabolism , Receptors, Thyrotropin/genetics , Receptors, Thyrotropin/metabolism , Thyroid Gland/metabolism , Thyroid Neoplasms/drug therapy
4.
Thyroid ; 17(5): 395-410, 2007 May.
Article in English | MEDLINE | ID: mdl-17542669

ABSTRACT

OBJECTIVE: To analyze interactions between the thyroid-stimulating hormone receptor (TSHR) and a thyroid-stimulating human monoclonal autoantibody (M22) at the molecular level. DESIGN: A complex of part of the TSHR extracellular domain (amino acids 1-260; TSHR260) bound to M22 Fab was prepared and purified. Crystals suitable for X-ray diffraction analysis were obtained and the structure solved at 2.55 A resolution. MAIN OUTCOME: TSHR260 comprises of a curved helical tube and M22 Fab clasps its concave surface at 90 degrees to the tube length axis. The interface buried in the complex is large (2,500 A(2)) and an extensive network of ionic, polar, and hydrophobic bonding is involved in the interaction. There is virtually no movement in the atoms of M22 residues on the binding interface compared to unbound M22 consistent with "lock and key" binding. Mutation of residues showing strong interactions in the structure influenced M22 activity, indicating that the binding detail observed in the complex reflects interactions of M22 with intact, functionally active TSHR. The receptor-binding arrangements of the autoantibody are very similar to those reported for follicle-stimulating hormone (FSH) binding to the FSH receptor (amino acids 1-268) and consequently to those of TSH itself. CONCLUSIONS: It is remarkable that the thyroid-stimulating autoantibody shows almost identical receptor-binding features to TSH although the structures and origins of these two ligands are very different. Furthermore, our structure of the TSHR and its complex with M22 provide foundations for developing new strategies to understand and control both glycoprotein hormone receptor activation and the autoimmune response to the TSHR.


Subject(s)
Immunoglobulins, Thyroid-Stimulating/chemistry , Receptors, Thyrotropin/chemistry , Amino Acid Sequence , Animals , CHO Cells , Cricetinae , Cricetulus , Crystallization , Follicle Stimulating Hormone/chemistry , Humans , Immunoglobulin Fab Fragments/chemistry , Molecular Sequence Data , Mutation , Receptors, FSH/chemistry , Receptors, Thyrotropin/genetics , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...