Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Faraday Discuss ; 200: 75-100, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28581558

ABSTRACT

Halogens (Cl, Br) have a profound influence on stratospheric ozone (O3). They (Cl, Br and I) have recently also been shown to impact the troposphere, notably by reducing the mixing ratios of O3 and OH. Their potential for impacting regional air-quality is less well understood. We explore the impact of halogens on regional pollutants (focussing on O3) with the European grid of the GEOS-Chem model (0.25° × 0.3125°). It has recently been updated to include a representation of halogen chemistry. We focus on the summer of 2015 during the ICOZA campaign at the Weybourne Atmospheric Observatory on the North Sea coast of the UK. Comparisons between these observations together with those from the UK air-quality network show that the model has some skill in representing the mixing ratios/concentration of pollutants during this period. Although the model has some success in simulating the Weybourne ClNO2 observations, it significantly underestimates ClNO2 observations reported at inland locations. It also underestimates mixing ratios of IO, OIO, I2 and BrO, but this may reflect the coastal nature of these observations. Model simulations, with and without halogens, highlight the processes by which halogens can impact O3. Throughout the domain O3 mixing ratios are reduced by halogens. In northern Europe this is due to a change in the background O3 advected into the region, whereas in southern Europe this is due to local chemistry driven by Mediterranean emissions. The proportion of hourly O3 above 50 nmol mol-1 in Europe is reduced from 46% to 18% by halogens. ClNO2 from N2O5 uptake onto sea-salt leads to increases in O3 mixing ratio, but these are smaller than the decreases caused by the bromine and iodine. 12% of ethane and 16% of acetone within the boundary layer is oxidised by Cl. Aerosol response to halogens is complex with small (∼10%) reductions in PM2.5 in most locations. A lack of observational constraints coupled to large uncertainties in emissions and chemical processing of halogens make these conclusions tentative at best. However, the results here point to the potential for halogen chemistry to influence air quality policy in Europe and other parts of the world.

2.
Environ Sci Pollut Res Int ; 22(24): 20295-305, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26304813

ABSTRACT

Analysis of diurnal patterns of surface ozone (O3) at multiple urban sites in the UK shows the occurrence of prominent nocturnal enhancements during the winter months (November-March). Whilst nocturnal surface ozone (NSO) enhancement events have been observed at other locations, this is the first time that such features have been demonstrated to occur in the UK and the second location globally. The observed NSO enhancement events in the UK were found to be so prevalent that they are clearly discernible in monthly diurnal cycles averaged over several years of data. Long-term (2000-2010) analysis of hourly surface ozone data from 18 urban background stations shows a bimodal diurnal variation during the winter months with a secondary nighttime peak around 0300 hours along with the primary daytime peak. For all but one site, the daily maxima NSO concentrations during the winter months exceeded 60 µg/m(3) on >20 % of the nights. The highest NSO value recorded was 118 µg/m(3). During the months of November, December, and January, the monthly averaged O3 concentrations observed at night (0300 h) even exceeded those observed in the daytime (1300 h). The analysis also shows that these NSO enhancements can last for several hours and were regional in scale, extending across several stations simultaneously. Interestingly, the urban sites in the north of the UK exhibited higher NSO than the sites in the south of the UK, despite their daily maxima being similar. In part, this seems to be related to the sites in the north typically having lower concentrations of nitrogen oxides.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Nitrogen Oxides/analysis , Ozone/analysis , Urbanization , Seasons , United Kingdom
3.
Proc Natl Acad Sci U S A ; 106(44): 18447-51, 2009 Nov 03.
Article in English | MEDLINE | ID: mdl-19841269

ABSTRACT

More than half the world's rainforest has been lost to agriculture since the Industrial Revolution. Among the most widespread tropical crops is oil palm (Elaeis guineensis): global production now exceeds 35 million tonnes per year. In Malaysia, for example, 13% of land area is now oil palm plantation, compared with 1% in 1974. There are enormous pressures to increase palm oil production for food, domestic products, and, especially, biofuels. Greater use of palm oil for biofuel production is predicated on the assumption that palm oil is an "environmentally friendly" fuel feedstock. Here we show, using measurements and models, that oil palm plantations in Malaysia directly emit more oxides of nitrogen and volatile organic compounds than rainforest. These compounds lead to the production of ground-level ozone (O(3)), an air pollutant that damages human health, plants, and materials, reduces crop productivity, and has effects on the Earth's climate. Our measurements show that, at present, O(3) concentrations do not differ significantly over rainforest and adjacent oil palm plantation landscapes. However, our model calculations predict that if concentrations of oxides of nitrogen in Borneo are allowed to reach those currently seen over rural North America and Europe, ground-level O(3) concentrations will reach 100 parts per billion (10(9)) volume (ppbv) and exceed levels known to be harmful to human health. Our study provides an early warning of the urgent need to develop policies that manage nitrogen emissions if the detrimental effects of palm oil production on air quality and climate are to be avoided.


Subject(s)
Agriculture , Air Pollution/analysis , Arecaceae/physiology , Nitrogen/analysis , Ozone/analysis , Plant Oils/analysis , Tropical Climate , Aircraft , Butadienes/analysis , Geography , Hemiterpenes/analysis , Monoterpenes/analysis , Nitric Oxide/analysis , Nitrogen Dioxide/analysis , Palm Oil , Pentanes/analysis , Peracetic Acid/analogs & derivatives , Peracetic Acid/analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...