Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Mult Scler ; 30(4-5): 535-545, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38366920

ABSTRACT

BACKGROUND: Paramagnetic rim lesions (PRLs) have been linked to higher clinical disease severity and relapse frequency. However, it remains unclear whether PRLs predict future, long-term disease progression. OBJECTIVES: The study aimed to assess whether baseline PRLs were associated with subsequent long-term (10 years) Expanded Disability Status Scale (EDSS) increase and relapse frequency and, if so, whether PRL-associated EDSS increase was mediated by relapse. METHODS: This retrospective analysis included 172 people with multiple sclerosis (pwMS) with 1868 yearly clinical visits over a mean follow-up time of 10.2 years. 3T magnetic resonance imaging (MRI) was acquired at baseline and PRLs were assessed on quantitative susceptibility mapping (QSM) images. The associations between PRLs, relapse, and rate of EDSS change were assessed using linear models. RESULTS: PRL+ pwMS had greater overall annual relapse rate (ß = 0.068; p = 0.010), three times greater overall odds of relapse (exp(ß) = 3.472; p = 0.009), and greater rate of yearly EDSS change (ß = 0.045; p = 0.010) than PRL- pwMS. Greater PRL number was associated with greater odds of at least one progression independent of relapse activity (PIRA) episode over follow-up (exp(ß) = 1.171, p = 0.009). Mediation analysis showed that the association between PRL presence (yes/no) and EDSS increase was 96.7% independent of relapse number. CONCLUSION: PRLs are a marker of aggressive ongoing disease inflammatory activity, including more frequent future clinical relapses and greater long-term, relapse-independent disability progression.


Subject(s)
Brain , Multiple Sclerosis , Humans , Retrospective Studies , Prognosis , Brain/pathology , Multiple Sclerosis/pathology , Magnetic Resonance Imaging , Chronic Disease , Disease Progression , Recurrence
2.
Mult Scler Relat Disord ; 79: 104968, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37716210

ABSTRACT

BACKGROUND: Recent developments in iron-sensitive MRI techniques have enabled visualization of chronic active lesions as paramagnetic rim lesions (PRLs) in vivo. Although PRLs have potential as a diagnostic and prognostic tool for multiple sclerosis (MS), limited studies have reported the reliability of PRL assessment. Further evaluation of PRL reliability, through original investigations and review of PRL literature, are warranted. METHODS: A single-center cohort study was conducted to evaluate the inter-rater reliability of PRL identification on quantitative susceptibiltiy mapping (QSM) in 10 people with MS, 5 people with clinically isolated syndrome, and 5 healthy controls. An additional systematic literature search was then conducted of published PRL reliability data, and these results were synthesized. RESULTS: In the single-center study, both inter-rater and intra-rater reliability of per-subject PRL number were at an "Excellent" (intraclass correlation coefficient (ICC) of 0.901 for both) level with only 2-years lesion classification experience. Across the reported literature values, reliability of per-lesion rim presence was on average "Near perfect" (for intra-rater; Cohen's κ = 0.833) and "Substantial" (for inter-rater; Cohens κ = 0.687), whereas inter-rater reliability of per-subject PRL number was "Good" (ICC = 0.874). Only 4/22 studies reported complete information on rater experience, rater level of training, detailed PRL classification criteria, and reliability cohort size and disease subtypes. CONCLUSION: PRLs can be reliably detected both at per-lesion and per-subject level. We recommend that future PRL studies report detailed reliability results, including rater experience level, and use a standardized set of reliability metrics (Cohen's κ or ICC) for improved comparability between studies.


Subject(s)
Multiple Sclerosis , Humans , Cohort Studies , Multiple Sclerosis/diagnostic imaging , Reproducibility of Results , Magnetic Resonance Imaging/methods , Iron
3.
Mult Scler ; 29(8): 1033-1038, 2023 07.
Article in English | MEDLINE | ID: mdl-37161349

ABSTRACT

BACKGROUND: Paramagnetic rim lesions (PRL) may be linked to relapse risk of people with relapsing-remitting multiple sclerosis (pwRRMS). OBJECTIVE: To determine the relationship between presence of PRL lesions and cognitive recovery after relapse. METHODS: PRL load was compared between acutely relapsing pwRRMS and matched stable pwRRMS controls (each group n = 21). In addition, cognitive recovery was compared between acutely relapsing pwRRMS with at least one PRL (PRL+) and those without any PRL (PRL-). RESULTS: Acutely relapsing pwRRMS had significantly greater prevalence and number of PRL (p = 0.004 and p = 0.003) compared with stable controls. These findings remained significant after adjusting for global neuroinflammatory burden (enhancing and non-enhancing lesions). In addition, acutely relapsing PRL + pwRRMS (n = 10) had worse recovery of verbal memory following relapse compared with acutely relapsing PRL - pwRRMS (n = 7; p = 0.027). CONCLUSION: These findings may partially explain previously suggested associations between presence of PRL with more severe disease course.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Incidence , Multiple Sclerosis, Relapsing-Remitting/pathology , Chronic Disease , Recurrence , Cognition , Magnetic Resonance Imaging , Brain/pathology
4.
Neuroimage ; 261: 119503, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35878723

ABSTRACT

Brain iron homeostasis is necessary for healthy brain function. MRI and histological studies have shown altered brain iron levels in the brains of patients with multiple sclerosis (MS), particularly in the deep gray matter (DGM). Previous studies were able to only partially separate iron-modifying effects because of incomplete knowledge of iron-modifying processes and influencing factors. It is therefore unclear to what extent and at which stages of the disease different processes contribute to brain iron changes. We postulate that spatially covarying magnetic susceptibility networks determined with Independent Component Analysis (ICA) reflect, and allow for the study of, independent processes regulating iron levels. We applied ICA to quantitative susceptibility maps for 170 individuals aged 9-81 years without neurological disease ("Healthy Aging" (HA) cohort), and for a cohort of 120 patients with MS and 120 age- and sex-matched healthy controls (HC; together the "MS/HC" cohort). Two DGM-associated "susceptibility networks" identified in the HA cohort (the Dorsal Striatum and Globus Pallidus Interna Networks) were highly internally reproducible (i.e. "robust") across multiple ICA repetitions on cohort subsets. DGM areas overlapping both robust networks had higher susceptibility levels than DGM areas overlapping only a single robust network, suggesting that these networks were caused by independent processes of increasing iron concentration. Because MS is thought to accelerate brain aging, we hypothesized that associations between age and the two robust DGM-associated networks would be enhanced in patients with MS. However, only one of these networks was altered in patients with MS, and it had a null age association in patients with MS rather than a stronger association. Further analysis of the MS/HC cohort revealed three additional disease-related networks (the Pulvinar, Mesencephalon, and Caudate Networks) that were differentially altered between patients with MS and HCs and between MS subtypes. Exploratory regression analyses of the disease-related networks revealed differential associations with disease duration and T2 lesion volume. Finally, analysis of ROI-based disease effects in the MS/HC cohort revealed an effect of disease status only in the putamen ROI and exploratory regression analysis did not show associations between the caudate and pulvinar ROIs and disease duration or T2 lesion volume, showing the ICA-based approach was more sensitive to disease effects. These results suggest that the ICA network framework increases sensitivity for studying patterns of brain iron change, opening a new avenue for understanding brain iron physiology under normal and disease conditions.


Subject(s)
Brain Diseases , Multiple Sclerosis , Brain/diagnostic imaging , Brain/pathology , Brain Diseases/pathology , Gray Matter/pathology , Humans , Iron/analysis , Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology
5.
Cereb Cortex ; 32(21): 4715-4732, 2022 10 20.
Article in English | MEDLINE | ID: mdl-35106536

ABSTRACT

Classical lesion studies led to a consensus that episodic and procedural memory arises from segregated networks identified with the hippocampus and the caudate nucleus, respectively. Neuroimaging studies, however, show that competitive and cooperative interactions occur between networks during memory tasks. Furthermore, causal experiments to manipulate connectivity between these networks have not been performed in humans. Although nodes common to both networks, such as the precuneus and ventrolateral thalamus, may mediate their interaction, there is no experimental evidence for this. We tested how network-targeted noninvasive brain stimulation affects episodic-procedural network interactions and how these network manipulations affect episodic and procedural memory in healthy young adults. Compared to control (vertex) stimulation, hippocampal network-targeted stimulation increased within-network functional connectivity and hippocampal connectivity with the caudate. It also increased episodic, relative to procedural, memory, and this persisted one week later. The differential effect on episodic versus procedural memory was associated with increased functional connectivity between the caudate, precuneus, and ventrolateral thalamus. These findings provide direct evidence of episodic-procedural network competition, mediated by regions common to both networks. Enhanced hippocampal network connectivity may boost episodic, but decrease procedural, memory by co-opting resources shared between networks.


Subject(s)
Memory, Episodic , Young Adult , Humans , Magnetic Resonance Imaging , Parietal Lobe/physiology , Hippocampus/physiology , Neuroimaging
6.
Behav Brain Res ; 419: 113707, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34890597

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) targeted to the hippocampal network via the inferior parietal cortex (HN-Stim) can strengthen hippocampal-cortical connectivity and improve episodic memory, offering a potential clinical intervention. However, acceptance of this technique has been tempered by the infrequent reproduction of findings in rTMS research on cognitive processes. We tested the reproducibility of the HN-Stim effect on episodic memory in our laboratory using different procedures from those previously published. We tested episodic memory in 29 participants before, one day, and one week after, three consecutive days of 20 Hz HN-Stim. Participants received stimulation targeted to either the area of inferior parietal cortex maximally connected to the left anterior hippocampus (HN-Stim; N = 14) or the vertex (control; N = 15), where we expected no effect. HN-Stim increased episodic memory performance one day, but not one week, after the last stimulation session. While failing to reproduce the lasting beneficial effect on memory found by others after five days of treatment, we found robust effects on behavior 24 h after treatment. HN-Stim is a safe and reliable means of enhancing episodic memory and may have potential for boosting learning and treating memory deficits.


Subject(s)
Hippocampus/physiology , Memory, Episodic , Nerve Net/physiology , Transcranial Magnetic Stimulation , Adult , Humans , Parietal Lobe/physiology , Reproducibility of Results , Transcranial Magnetic Stimulation/standards
7.
Neuroimage ; 237: 118199, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34033914

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) of the inferior parietal cortex (IPC) increases resting-state functional connectivity (rsFC) of the hippocampus with the precuneus and other posterior cortical areas and causes proportional improvement of episodic memory. The anatomical pathway(s) responsible for the propagation of these effects from the IPC is unknown and may not be direct. In order to assess the relative contributions of candidate pathways from the IPC to the MTL via the parahippocampal cortex and precuneus, to the effects of rTMS on rsFC and memory improvement, we used diffusion tensor imaging to measure the extent to which individual differences in fractional anisotropy (FA) in these pathways accounted for individual differences in response. FA in the IPC-parahippocampal pathway and several MTL pathways predicted changes in rsFC. FA in both parahippocampal and hippocampal pathways was related to changes in episodic, but not procedural, memory. These results implicate pathways to the MTL in the enhancing effect of parietal rTMS on hippocampal rsFC and memory.


Subject(s)
Connectome , Hippocampus , Magnetic Resonance Imaging , Memory, Episodic , Nerve Net , Parahippocampal Gyrus , Parietal Lobe , Transcranial Magnetic Stimulation , Adult , Diffusion Tensor Imaging , Female , Hippocampus/anatomy & histology , Hippocampus/diagnostic imaging , Hippocampus/physiology , Humans , Individuality , Male , Nerve Net/anatomy & histology , Nerve Net/diagnostic imaging , Nerve Net/physiology , Neural Pathways/anatomy & histology , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Parahippocampal Gyrus/anatomy & histology , Parahippocampal Gyrus/diagnostic imaging , Parahippocampal Gyrus/physiology , Parietal Lobe/anatomy & histology , Parietal Lobe/diagnostic imaging , Parietal Lobe/physiology , Young Adult
8.
PLoS One ; 15(1): e0216185, 2020.
Article in English | MEDLINE | ID: mdl-31929531

ABSTRACT

The ability to interpret transcranial magnetic stimulation (TMS)-evoked electroencephalography (EEG) potentials (TEPs) is limited by artifacts, such as auditory evoked responses produced by discharge of the TMS coil. TEPs generated from direct cortical stimulation should vary in their topographical activity pattern according to stimulation site and differ from responses to sham stimulation. Responses that do not show these effects are likely to be artifactual. In 20 healthy volunteers, we delivered active and sham TMS to the right prefrontal, left primary motor, and left posterior parietal cortex and compared the waveform similarity of TEPs between stimulation sites and active and sham TMS using a cosine similarity-based analysis method. We identified epochs after the stimulus when the spatial pattern of TMS-evoked activation showed greater than random similarity between stimulation sites and sham vs. active TMS, indicating the presence of a dominant artifact. To do this, we binarized the derivatives of the TEPs recorded from 30 EEG channels and calculated cosine similarity between conditions at each time point with millisecond resolution. Only TEP components occurring before approximately 80 ms differed across stimulation sites and between active and sham, indicating site and condition-specific responses. We therefore conclude that, in the absence of noise masking or other measures to decrease neural artifact, TEP components before about 80 ms can be safely interpreted as stimulation location-specific responses to TMS, but components beyond this latency should be interpreted with caution due to high similarity in their topographical activity pattern.


Subject(s)
Evoked Potentials, Auditory/physiology , Motor Cortex/physiology , Parietal Lobe/physiology , Transcranial Magnetic Stimulation , Adult , Brain Mapping , Electroencephalography , Female , Healthy Volunteers , Humans , Male , Young Adult
9.
Neuromodulation ; 23(3): 366-372, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31667947

ABSTRACT

OBJECTIVE: Repetitive transcranial magnetic stimulation (rTMS) can cause potentially useful changes in brain functional connectivity (FC), but the number of treatment sessions required is unknown. We applied the continual reassessment method (CRM), a Bayesian, adaptive, dose-finding procedure to a rTMS paradigm in an attempt to answer this question. MATERIALS AND METHODS: The sample size was predetermined at 15 subjects and the cohort size was set with three individuals (i.e., five total cohorts). In a series of consecutive daily sessions, we delivered rTMS to the left posterior parietal cortex and measured resting-state FC with fMRI in a predefined hippocampal network in the left hemisphere. The session number for each successive cohort was determined by the CRM algorithm. We set a response criterion of a 0.028 change in FC between the hippocampus and the parietal cortex, which was equal to the increase seen in 87.5% of participants in a previous study using five sessions. RESULTS: A ≥criterion change was observed in 9 of 15 participants. The CRM indicated that greater than four sessions are required to produce the criterion change reliably in future studies. CONCLUSIONS: The CRM can be adapted for rTMS dose finding when a reliable outcome measure, such as FC, is available. The minimum effective dose needed to produce a criterion increase in FC in our hippocampal network of interest at 87.5% efficacy was estimated to be greater than four sessions. This study is the first demonstration of a Bayesian, adaptive method to explore a rTMS parameter.


Subject(s)
Algorithms , Cerebral Cortex/physiology , Hippocampus/physiology , Nerve Net/physiology , Transcranial Magnetic Stimulation/methods , Adult , Female , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Male , Neural Pathways/physiology , Pilot Projects
10.
eNeuro ; 6(5)2019.
Article in English | MEDLINE | ID: mdl-31591137

ABSTRACT

Wang et al. (2014) found that that five daily sessions of repetitive transcranial magnetic stimulation (rTMS) of the posterior parietal cortex (PPC) significantly increased functional connectivity (FC) in a network centered on the hippocampus, and caused a correlated increase in memory performance. However, this finding has not been reproduced independently and the requirement for five sessions has not been validated. We aimed to reproduce the imaging results of this experiment, focusing on hippocampal FC changes and using fewer days of rTMS. We measured resting state FC before and after three (N = 9) or four (N = 6) consecutive daily PPC rTMS sessions, using similar delivery parameter settings as Wang et al. (2014) Eight subjects received 3 d of rTMS delivered to the vertex as a control. We employed whole-brain and hypothesis-based statistical approaches to test for hippocampal FC changes. Additionally, we calculated FC in 17 brain networks to determine whether the topographic pattern of FC change was similar between studies. We did not include behavioral testing in this study. PPC, but not vertex, rTMS caused significant changes in hippocampal FC to the same regions as in the previous study. Brain-wide changes in hippocampal FC significantly exceeded changes in global connectedness, indicating that the effect of PPC rTMS was specific to the hippocampal network. Baseline hippocampal FC, measured before receiving stimulation, predicted the degree of rTMS-induced hippocampal FC as in the previous study. These findings reproduce the imaging findings of Wang et al. (2014) and show that FC enhancement can occur after only three to four sessions of PPC rTMS.


Subject(s)
Hippocampus/physiology , Neural Pathways/physiology , Parietal Lobe/physiology , Transcranial Direct Current Stimulation/methods , Adult , Female , Humans , Male , Reproducibility of Results , Young Adult
11.
J Vis Exp ; (100): e52971, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26168271

ABSTRACT

The chronic nature of vascular disease progression requires the development of experimental techniques that simulate physiologic and pathologic vascular behaviors on disease-relevant time scales. Previously, microcontact printing has been used to fabricate two-dimensional functional arterial mimics through patterning of extracellular matrix protein as guidance cues for tissue organization. Vascular muscular thin films utilized these mimics to assess functional contractility. However, the microcontact printing fabrication technique used typically incorporates hydrophobic PDMS substrates. As the tissue turns over the underlying extracellular matrix, new proteins must undergo a conformational change or denaturing in order to expose hydrophobic amino acid residues to the hydrophobic PDMS surfaces for attachment, resulting in altered matrix protein bioactivity, delamination, and death of the tissues. Here, we present a microfluidic deposition technique for patterning of the crosslinker compound genipin. Genipin serves as an intermediary between patterned tissues and PDMS substrates, allowing cells to deposit newly-synthesized extracellular matrix protein onto a more hydrophilic surface and remain attached to the PDMS substrates. We also show that extracellular matrix proteins can be patterned directly onto deposited genipin, allowing dictation of engineered tissue structure. Tissues fabricated with this technique show high fidelity in both structural alignment and contractile function of vascular smooth muscle tissue in a vascular muscular thin film model. This technique can be extended using other cell types and provides the framework for future study of chronic tissue- and organ-level functionality.


Subject(s)
Cell Culture Techniques/methods , Iridoids/chemistry , Microfluidic Analytical Techniques/methods , Muscle, Smooth, Vascular/cytology , Cell Culture Techniques/instrumentation , Dimethylpolysiloxanes/chemistry , Fibronectins/chemistry , Humans , Microfluidic Analytical Techniques/instrumentation
12.
Biofabrication ; 6(4): 045005, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25245868

ABSTRACT

Vascular disease is a leading cause of death globally and typically manifests chronically due to long-term maladaptive arterial growth and remodeling. To date, there is no in vitro technique for studying vascular function over relevant disease time courses that both mimics in vivo-like tissue structure and provides a simple readout of tissue stress. We aimed to extend tissue viability in our muscular thin film contractility assay by modifying the polydimethylsiloxane (PDMS) substrate with micropatterned genipin, allowing extracellular matrix turnover without cell loss. To achieve this, we developed a microfluidic delivery system to pattern genipin and extracellular matrix proteins on PDMS prior to cell seeding. Tissues constructed using this method showed improved viability and maintenance of in vivo-like lamellar structure. Functional contractility of tissues fabricated on genipin-modified substrates remained consistent throughout two weeks in culture. These results suggest that muscular thin films with genipin-modified PDMS substrates are a viable method for conducting functional studies of arterial growth and remodeling in vascular diseases.


Subject(s)
Bioprinting/methods , Iridoids/pharmacology , Microfluidic Analytical Techniques/instrumentation , Models, Cardiovascular , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/physiology , Cell Survival/drug effects , Cells, Cultured , Dimethylpolysiloxanes/chemistry , Fibronectins/chemistry , Fibronectins/pharmacology , Humans , Iridoids/chemistry , Microfluidic Analytical Techniques/methods , Muscle, Smooth, Vascular/chemistry , Muscle, Smooth, Vascular/drug effects , Tissue Engineering , Umbilical Arteries/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...