Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 11: 51, 2020.
Article in English | MEDLINE | ID: mdl-32117388

ABSTRACT

Sustainable agriculture relies on practices and technologies that combine effectiveness with a minimal environmental footprint. RNA interference (RNAi), a eukaryotic process in which transcript expression is reduced in a sequence-specific manner, can be co-opted for the control of plant pests and pathogens in a topical application system. Double-stranded RNA (dsRNA), the key trigger molecule of RNAi, has been shown to provide protection without the need for integration of dsRNA-expressing constructs as transgenes. Consequently, development of RNA-based biopesticides is gaining momentum as a narrow-spectrum alternative to chemical-based control measures, with pests and pathogens targeted with accuracy and specificity. Limitations for a commercially viable product to overcome include stable delivery of the topically applied dsRNA and extension of the duration of protection. In addition to the research focus on delivery of dsRNA, development of regulatory frameworks, risk identification, and establishing avoidance and mitigation strategies is key to widespread deployment of topical RNAi technologies. Once in place, these measures will provide the crop protection industry with the certainty necessary to expend resources on the development of innovative dsRNA-based products. Readily evident risks to human health appear minimal, with multiple barriers to uptake and a long history of consumption of dsRNA from plant material. Unintended impacts to the environment are expected to be most apparent in species closely related to the target. Holistic design practices, which incorporate bioinformatics-based dsRNA selection along with experimental testing, represent important techniques for elimination of adverse impacts.

2.
J Agric Food Chem ; 66(26): 6480-6486, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-28812885

ABSTRACT

Plant protection products containing nanomaterials that alter the functionality or risk profile of active ingredients (nano-enabled pesticides) promise many benefits over conventional pesticide products. These benefits may include improved formulation characteristics, easier application, better targeting of pest species, increased efficacy, lower application rates, and enhanced environmental safety. After many years of research and development, nano-enabled pesticides are starting to make their way into the market. The introduction of this technology raises a number of issues for regulators, including how does the ecological risk assessment of nano-enabled pesticide products differ from that of conventional plant protection products? In this paper, a group drawn from regulatory agencies, academia, research, and the agrochemicals industry offers a perspective on relevant considerations pertaining to the problem formulation phase of the ecological risk assessment of nano-enabled pesticides.


Subject(s)
Nanostructures/chemistry , Pesticides/chemistry , Drug Compounding , Nanostructures/toxicity , Pesticides/toxicity , Risk Assessment
3.
J Agric Food Chem ; 62(19): 4227-40, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24754346

ABSTRACT

Nanopesticides or nano plant protection products represent an emerging technological development that, in relation to pesticide use, could offer a range of benefits including increased efficacy, durability, and a reduction in the amounts of active ingredients that need to be used. A number of formulation types have been suggested including emulsions (e.g., nanoemulsions), nanocapsules (e.g., with polymers), and products containing pristine engineered nanoparticles, such as metals, metal oxides, and nanoclays. The increasing interest in the use of nanopesticides raises questions as to how to assess the environmental risk of these materials for regulatory purposes. Here, the current approaches for environmental risk assessment of pesticides are reviewed and the question of whether these approaches are fit for purpose for use on nanopesticides is addressed. Potential adaptations to existing environmental risk assessment tests and procedures for use with nanopesticides are discussed, addressing aspects such as analysis and characterization, environmental fate and exposure assessment, uptake by biota, ecotoxicity, and risk assessment of nanopesticides in aquatic and terrestrial ecosystems. Throughout, the main focus is on assessing whether the presence of the nanoformulation introduces potential differences relative to the conventional active ingredients. The proposed changes in the test methodology, research priorities, and recommendations would facilitate the development of regulatory approaches and a regulatory framework for nanopesticides.


Subject(s)
Environmental Monitoring/methods , Environmental Pollutants/analysis , Pesticides/analysis , Risk Assessment/methods , Environmental Monitoring/standards , Environmental Pollutants/toxicity , Guidelines as Topic , Nanoparticles/analysis , Nanoparticles/toxicity , Pesticides/toxicity , Risk Assessment/standards
4.
Handb Exp Pharmacol ; (199): 265-90, 2010.
Article in English | MEDLINE | ID: mdl-20204591

ABSTRACT

The use of veterinary drugs in animal production is necessary for the prevention and treatment of disease; however, such use may result in residues. Regulatory authorities administer legislative frameworks which ensure that foods derived from animals treated with approved veterinary drugs are safe for human consumption. A human food safety evaluation is conducted as follows: it estimates the risk to human health and safety--based on scientific assessment of the available information and data--formulates measures for controlling the risks identified, and communicates the findings and implications of the risk assessment to interested parties. Foods derived from animals are monitored for the presence of drug residues. The reported incidence of illegal residues from these programmes is very low. These findings reassure the public that veterinary drugs are effectively regulated and that food obtained from treated animals does not contain residues that might constitute a health hazard to consumers. Non-regulatory organizations, including the veterinary pharmaceutical industry, producer organisations, veterinarians and food processors, all contribute to a safe food supply. The food safety risk analysis framework is continually refined to ensure that the health of all consumers is protected.


Subject(s)
Drug Residues/analysis , Veterinary Medicine/standards , Animal Diseases/drug therapy , Animals , Developing Countries , Drug Monitoring/methods , Drug Monitoring/veterinary , Food/standards , Food Contamination/legislation & jurisprudence , Food Contamination/prevention & control , Humans , Risk Assessment/standards , Risk Management , Safety
SELECTION OF CITATIONS
SEARCH DETAIL
...