Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Oecologia ; 190(3): 665-677, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31250188

ABSTRACT

Sea urchins have the capacity to destructively overgraze kelp beds and cause a wholesale shift to an alternative and stable 'urchin barren' reef state. However, destructive grazing appears labile and contingent on behavioural shift. Changes in supply of allochthonous 'drift-kelp' food are hypothesised as a trigger of change in urchin grazing behaviour, yet field tests are lacking. Here we conduct a suite of in situ behavioural surveys and manipulative experiments within kelp beds and on urchin barrens to examine foraging movements and evidence for a behavioural switch to an 'overgrazing mode' by the Australian urchin Heliocidaris erythrogramma (Echinometridae). Tracking urchins using time-lapse photography revealed urchin foraging to conform to a random walk model within kelp beds and on barrens. However, many individuals tended towards local movement within proximal crevices and movement was reduced in kelp beds compared to barrens. Directional movement of urchins toward newly available kelp was experimentally inducible, consistent with locally observed 'mobile-feeding-fronts' that develop at barrens-kelp interfaces. Habitat-specific feeding modes were also evidenced by herbivory assays which revealed urchin grazing rates to be high on both drift-kelp and standing kelp on barren grounds, while drift-kelp but not standing kelp was consumed at high rates within kelp beds. Time-lapse tracking of urchin foraging before/after addition of drift-kelp revealed a reduction in foraging across the reef surface after drift-kelp capture. Collectively, results indicate that the availability of drift-kelp is a pivotal trigger in determining urchin feeding modes which thus mediates the shift between alternative stable states for rocky reef ecosystems.


Subject(s)
Kelp , Animals , Australia , Ecosystem , Food Chain , Sea Urchins
3.
Ecology ; 100(2): e02577, 2019 02.
Article in English | MEDLINE | ID: mdl-30707451

ABSTRACT

Sea urchin grazing can result in regime shift from productive kelp beds to sea urchin barren grounds that represent an alternative and stable reef state. Here we examine the stability of urchin barrens by defining the demographics of the Australian urchin Heliocidaris erythrogramma during regime shift to, and maintenance of, barrens. Inverse-logistic modeling of calibrated in situ annual growth increments for five urchin populations, two from kelp beds and three from barrens, demonstrate slowing of urchin growth as availability and consumption of standing and/or drift kelp declines. Population age structures were predicted from observed sizes over four years (2012-2015, n = 5,864 individuals), which indicated stable age distributions for populations both maintaining barrens and actively grazing among kelp beds. Younger age distributions occurred on barrens whereas more mature populations existed within kelp beds, indicating that high recruitment facilitates maintenance of barrens while overgrazing appeared more reliant on adult urchins grazing from the edges of kelp beds, as opposed to juvenile recruitment among kelp. Leslie-matrix projections indicated potential for unchecked population growth for all study populations, but which varied depending on whether local or regional recruitment rates were modeled. Ultimately, strong density dependence was observed to check population growth; with high-recruitment/high-density populations offset by reduced growth rates and decreased longevity. Increasing disease rates among older urchins in high-density populations were consistent with observed density-dependent mortality, while tethering of healthy urchins revealed highest predation on small urchins within kelp beds, suggesting some remnant resilience of declining kelp habitat. Results demonstrate that the greatest opportunity for urchin population control is when reefs exist in the kelp bed state, at which point urchin populations are prone to negative feedback. Conversely, control of urchins on barrens is demonstrably difficult given positive density-dependent feedbacks that act to stabilize population size and which evidently underpin the hysteresis effect governing the persistence of this alternative stable state.


Subject(s)
Food Chain , Kelp , Animals , Australia , Ecosystem , Humans , Sea Urchins
4.
Oecologia ; 188(4): 1239-1251, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30406820

ABSTRACT

Understanding the strength and type of interactions among species is vital to anticipate how ecosystems will respond to ongoing anthropogenic stressors. Here, we examine the ecological function of native (Ecklonia radiata) and invasive (Undaria pinnatifida) kelps in resisting shifts to sediment-trapping turf on reefs within the highly urbanized temperate Port Phillip Bay (PPB), Australia. Short-term (30 days) and long-term (232 days) manipulations demonstrated that kelp laminae can clear and maintain the substratum free of turfs, while conversely, removal of kelp leads to a proliferation of turfs. Analyses looking at the relationship between total length of E. radiata and U. pinnatifida and the area cleared of turf algae showed that the clearing effect of E. radiata over a year was greater than that of U. pinnatifida due to the annual die-back of the invasive. A natural experiment (608 days) identified that ongoing sea urchin (Heliocidaris erythrogramma) grazing led to native kelp bed decline, facilitating turf dominance. Even though U. pinnatifida establishes once native beds are disturbed, its ecological function in clearing turf is weaker than E. radiata, given its annual habit. In PPB, turfs represent the more persistent and problematic algal group and are likely changing the structure, function, and energy flows of shallow temperate reefs in this urbanised embayment.


Subject(s)
Kelp , Animals , Australia , Ecosystem , Sea Urchins
5.
Mar Pollut Bull ; 130: 159-169, 2018 May.
Article in English | MEDLINE | ID: mdl-29866542

ABSTRACT

Pollution increasingly impacts healthy functioning of marine ecosystems globally. Here we quantify concentrations of major pollutant types (heavy metals/sewage/petrochemicals/plastics) as accumulated within marine sediments on and/or immediately adjacent to shallow reefs for 42 sites spanning coastal population centres across south-eastern Australia. Gradients in pollutants were revealed, but few pollutants co-varied, while increasing wave exposure ostensibly diluted concentrations of all pollutants except microplastics. Examination of reef biodiversity indicators revealed that maximum size of fauna and flora, a key life-history parameter summarised by the Community shortness index, plus declining functional and species richness, were the most sensitive bioindicators of pollutants - for which heavy metals and nutrient-enrichment were most pervasive. Results indicate that assemblages of biogenic habitat formers and associated fauna collapse from "long and complicated" to "short and simplified" configurations in response to increasing pollution, and this community signature may form an effective bioindicator to track human-driven degradation.


Subject(s)
Biodiversity , Coral Reefs , Metals, Heavy/toxicity , Plastics/toxicity , Sewage/adverse effects , Animals , Australia , Ecosystem , Environmental Pollutants/analysis , Environmental Pollutants/toxicity , Environmental Pollution/adverse effects , Fishes , Invertebrates , Metals, Heavy/analysis , Seaweed , Sewage/analysis
6.
Mar Pollut Bull ; 121(1-2): 104-110, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28571629

ABSTRACT

Microplastic pollutants occur in marine environments globally, however estimates of seafloor concentrations are rare. Here we apply a novel method to quantify size-graded (0.038-4.0mm diam.) concentrations of plastics in marine sediments from 42 coastal and estuarine sites spanning pollution gradients across south-eastern Australia. Acid digestion/density separation revealed 9552 individual microplastics from 2.84l of sediment across all samples; equating to a regional average of 3.4 microplastics·ml-1 sediment. Microplastics occurred as filaments (84% of total) and particle forms (16% of total). Positive correlations between microplastic filaments and wave exposure, and microplastic particles with finer sediments, indicate hydrological/sediment-matrix properties are important for deposition/retention. Contrary to expectations, positive relationships were not evident between microplastics and other pollutants (heavy metals/sewage), nor were negative relationships with neighbouring reef biota detected. Rather, microplastics were ubiquitous across sampling sites. Positive associations with some faunal-elements (i.e. invertebrate species richness) nevertheless suggest high potential for microplastic ingestion.


Subject(s)
Environmental Monitoring , Plastics , Biota , Oceans and Seas , South Australia , Water Pollutants, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...