Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 03 22.
Article in English | MEDLINE | ID: mdl-36947108

ABSTRACT

COVID-19, with persistent and new onset of symptoms such as fatigue, post-exertional malaise, and cognitive dysfunction that last for months and impact everyday functioning, is referred to as Long COVID under the general category of post-acute sequelae of SARS-CoV-2 infection (PASC). PASC is highly heterogenous and may be associated with multisystem tissue damage/dysfunction including acute encephalitis, cardiopulmonary syndromes, fibrosis, hepatobiliary damages, gastrointestinal dysregulation, myocardial infarction, neuromuscular syndromes, neuropsychiatric disorders, pulmonary damage, renal failure, stroke, and vascular endothelial dysregulation. A better understanding of the pathophysiologic mechanisms underlying PASC is essential to guide prevention and treatment. This review addresses potential mechanisms and hypotheses that connect SARS-CoV-2 infection to long-term health consequences. Comparisons between PASC and other virus-initiated chronic syndromes such as myalgic encephalomyelitis/chronic fatigue syndrome and postural orthostatic tachycardia syndrome will be addressed. Aligning symptoms with other chronic syndromes and identifying potentially regulated common underlining pathways may be necessary for understanding the true nature of PASC. The discussed contributors to PASC symptoms include sequelae from acute SARS-CoV-2 injury to one or more organs, persistent reservoirs of the replicating virus or its remnants in several tissues, re-activation of latent pathogens such as Epstein-Barr and herpes viruses in COVID-19 immune-dysregulated tissue environment, SARS-CoV-2 interactions with host microbiome/virome communities, clotting/coagulation dysregulation, dysfunctional brainstem/vagus nerve signaling, dysautonomia or autonomic dysfunction, ongoing activity of primed immune cells, and autoimmunity due to molecular mimicry between pathogen and host proteins. The individualized nature of PASC symptoms suggests that different therapeutic approaches may be required to best manage specific patients.


Subject(s)
COVID-19 , Humans , COVID-19/complications , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Autoimmunity , Blood Coagulation , Disease Progression
2.
ACS Sens ; 2(6): 796-802, 2017 Jun 23.
Article in English | MEDLINE | ID: mdl-28723128

ABSTRACT

In this work, we demonstrate the quantification of creatinine in human urine samples using a microcalorimetric sensing system. The calorimetric sensor is based on an array of microfabricated Y-cut quartz resonators. The piezoelectric quartz is etched down to a thickness of 10 µm and exhibits a bulk acoustic resonance of 166 MHz. The temperature sensitivity of this high-frequency quartz resonator is 14 600 Hz/K due to the high phenomenological sensitivity of quartz. Most importantly, the quartz sensors and the analyte fluidics are decoupled providing a significantly more robust calorimetric sensing system than directly contacted chip calorimeters. A reference resonator, consisting of a suspended structure held by four arms, was realized to thermal isolation from the bulk quartz by using focused ion beam etching. We employ alginate entrapped creatinine deiminase to transduce urinary creatinine into temperature signatures, permitting the quantification of creatinine. Fairly good agreement with the measured creatinine values in the 5 urine samples using calorimetric and HPLC methods is obtained.

3.
Open J Nephrol ; 2(2): 5-18, 2012 Jun 25.
Article in English | MEDLINE | ID: mdl-23293752

ABSTRACT

Diabetes mellitus is the leading cause of end stage renal disease and is responsible for more than 40% of all cases in the United States. Several therapeutic interventions for the treatment of diabetic nephropathy have been developed and implemented over the past few decades with some degree of success. However, the renal protection provided by these therapeutic modalities is incomplete. More effective approaches are therefore urgently needed. Recently, several novel therapeutic strategies have been explored in treating DN patients including Islet cell transplant, Aldose reductase inhibitors, Sulodexide (GAC), Protein Kinase C (PKC) inhibitors, Connective tissue growth factor (CTGF) inhibitors, Transforming growth factor-beta (TGF-ß) inhibitors and bardoxolone. The benefits and risks of these agents are still under investigation. This review aims to summarize the utility of these novel therapeutic approaches.

4.
J Immunol ; 185(8): 4904-11, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20844196

ABSTRACT

Sterile inflammation is associated with tissue injury and organ failure. Recent studies indicate that certain endogenous cytokines and immune cells may limit tissue injury by reducing immune-mediated inflammatory responses. Cisplatin is a commonly used anticancer chemotherapeutic agent but causes acute kidney injury and dysfunction. In a recent study, we showed that renal dendritic cells attenuate cisplatin-induced kidney injury by reducing inflammation. In this study, we investigated the effect of endogenous IL-10 and dendritic cell IL-10 in cisplatin-mediated kidney injury. Cisplatin treatment caused increases in renal IL-10R1 expression and STAT3 phosphorylation. In response to cisplatin treatment, IL-10 knockout mice showed more rapid and greater increases in blood urea nitrogen and serum creatinine compared with wild-type mice, indicating that endogenous IL-10 ameliorates kidney injury in cisplatin nephrotoxicity. Renal infiltration of IFN-γ-producing neutrophils was markedly increased in IL-10 knockout mice compared with wild-type mice. However, IFN-γ neutralization had no impact on renal dysfunction, suggesting IFN-γ-independent mechanisms of tissue injury in cisplatin nephrotoxicity. Renal dendritic cells showed high expression of IL-10 in response to cisplatin treatment. We further investigated the effect of dendritic cell-derived IL-10 in cisplatin nephrotoxicity using a conditional cell ablation approach. Mixed bone marrow chimeric mice lacking IL-10 in dendritic cells showed moderately greater renal dysfunction than chimeric mice positive for IL-10 in dendritic cells. These data demonstrate that endogenous IL-10 reduces cisplatin nephrotoxicity and associated inflammation. Moreover, IL-10 produced by dendritic cells themselves accounts for a portion of the protective effect of dendritic cells in cisplatin nephrotoxicity.


Subject(s)
Antineoplastic Agents/adverse effects , Cisplatin/adverse effects , Dendritic Cells/metabolism , Interleukin-10/metabolism , Kidney Diseases/immunology , Animals , Cell Separation , Dendritic Cells/immunology , Flow Cytometry , Immunohistochemistry , Interleukin-10/immunology , Kidney/drug effects , Kidney/immunology , Kidney Diseases/chemically induced , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophil Infiltration/drug effects , Neutrophil Infiltration/immunology , Reverse Transcriptase Polymerase Chain Reaction
5.
Toxins (Basel) ; 2(11): 2490-518, 2010 11.
Article in English | MEDLINE | ID: mdl-22069563

ABSTRACT

Cisplatin is a widely used and highly effective cancer chemotherapeutic agent. One of the limiting side effects of cisplatin use is nephrotoxicity. Research over the past 10 years has uncovered many of the cellular mechanisms which underlie cisplatin-induced renal cell death. It has also become apparent that inflammation provoked by injury to renal epithelial cells serves to amplify kidney injury and dysfunction in vivo. This review summarizes recent advances in our understanding of cisplatin nephrotoxicity and discusses how these advances might lead to more effective prevention.


Subject(s)
Antineoplastic Agents/toxicity , Cisplatin/toxicity , Kidney Diseases/chemically induced , Kidney/drug effects , Nephritis/chemically induced , Animals , Antineoplastic Agents/pharmacokinetics , Apoptosis/drug effects , Cisplatin/pharmacokinetics , DNA Damage , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/pathology , Female , Humans , Kidney Diseases/pathology , Male , Nephritis/pathology , Risk Factors
6.
Am J Pathol ; 175(3): 1010-8, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19700747

ABSTRACT

Netrin-1, a diffusible laminin-related protein, is highly expressed in the kidney. However, the pathophysiological roles of netrin-1 in the kidney are unknown. To address this question directly, we used transgenic mice that overexpress chicken netrin-1 in the kidney. Netrin-1 overexpression was confirmed by real-time RT-PCR and Western blot analysis. Eight-week-old wild-type and transgenic mice were subjected to 26 minutes of renal ischemia followed by reperfusion for 72 hours. Wild-type mice developed more severe renal dysfunction by 24 hours than netrin-1 transgenic mice. Functional improvement was associated with better preservation of morphology, reduced cytokine expression, and reduced oxidative stress in the kidney of transgenic mice as compared with wild-type mice. In addition, both basal and reperfusion-induced cell proliferation were dramatically increased in transgenic kidneys as determined by Ki-67 staining. Interestingly, ischemia reperfusion induced a large increase in apoptosis in wild-type mice but not in netrin-1 transgenic mice that was associated with reduced caspase-3 activation in the transgenic kidney. These results suggest that netrin-1 protects renal tubular epithelial cells against ischemia reperfusion-induced injury by increasing proliferation and suppressing apoptosis.


Subject(s)
Apoptosis , Kidney/metabolism , Nerve Growth Factors/biosynthesis , Reperfusion Injury/metabolism , Tumor Suppressor Proteins/biosynthesis , Animals , Cell Proliferation , Chickens , Gene Expression Regulation , Kidney/blood supply , Kidney/pathology , Mice , Mice, Transgenic , Nerve Growth Factors/genetics , Netrin-1 , Reperfusion Injury/pathology , Reperfusion Injury/prevention & control , Reverse Transcriptase Polymerase Chain Reaction , Tumor Suppressor Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...