Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Total Environ ; 917: 170238, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38280601

ABSTRACT

We experimentally assessed the impact of the application of herbicides and fertilizers derived from agricultural activity through the individual and simultaneous addition of glyphosate, atrazine, and nutrients (nitrogen 'N' and phosphorus 'P') on the biofilm community and their resilience when the experimental factors were removed. We hypothesize that i) the presence of agrochemicals negatively affects the biofilm community leading to the simplification of the community structure; ii) the individual or simultaneous addition of herbicides and nutrients produces differential responses in the biofilm; and iii) the degree of biofilm recovery differs according to the treatment applied. Environmentally relevant concentrations of glyphosate (0.7 mgL-1), atrazine (44 µgL-1), phosphorus (1 mg P L-1 [KH2PO4]), and nitrogen (3 mg N L-1[NaNO3]) were used. Chlorophyll a, ash-free dry weight, abundance of main biofilm groups and nutrient contents in biofilm were analyzed. At initial exposure time, all treatments were dominated by Cyanobacteria; through the exposure period, it was observed a progressive replacement by Bacillariophyceae. This replacement occurred on day 3 for the control and was differentially delayed in all herbicides and/or nutrient treatments in which the abundance of cyanobacteria remains significant yet in T5. A significant correlation was observed between the abundance of cyanobacteria and the concentration of atrazine, suggesting that this group is less sensitive than diatoms. The presence of agrochemicals exerted differential effects on the different algal groups. Herbicides contributed to phosphorus and nitrogen inputs. The most frequently observed interactions between experimental factors (nutrients and herbicides) was additivity excepting for species richness (antagonistic effect). In the final recovery time, no significant differences were found between the treatments and the control in most of the evaluated parameters, evincing the resilience of the community.


Subject(s)
Atrazine , Cyanobacteria , Diatoms , Herbicides , Water Pollutants, Chemical , Herbicides/toxicity , Atrazine/toxicity , Chlorophyll A , Glyphosate , Phosphorus , Biofilms , Nitrogen/analysis , Fertilization , Water Pollutants, Chemical/toxicity
3.
Environ Sci Pollut Res Int ; 30(15): 43573-43585, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36658320

ABSTRACT

The Espinal region (Entre Ríos, Argentina) has suffered land use changes caused by expansion of the agricultural frontier. This expansion has led to an increased use of pesticides. This study is aimed at better understanding the spatial distribution of pesticides in surface water of the Estacas stream, a representative basin of the Espinal region, associated with crop production. The location and proportion of area with soybean, maize, and wheat crops in each catchment area of the basin were estimated, and surface water samples were taken to perform a pesticide screening during a period of one year. Soybean represented approximately 71% of the total cultivated area of the basin, whereas maize and wheat accounted for 15% and 14%, respectively. The analysis of 125 analytes showed the presence of 19 pesticides. The pesticide load maps showed that atrazine was detected in an area of relatively low catchment compared to other pesticides as glyphosate, which is applied in all the agricultural fields of the basin. The load of metolachlor and S-metolachlor covered a large area of the basin. The highest recorded concentrations of these pesticides were 86 µg L-1 of atrazine, 24 µg L-1 of metolachlor, 19 µg L-1 of glyphosate, and 15 µg L-1 of S-metolachlor. The results allow better understanding the environmental distribution of pesticides associated with pest control in the crops of the basin studied, the doses and times of application, and the variation in the rainfall in the basin. This study provides relevant information about how aquatic ecosystems in agricultural basins receive the diffuse contribution of pesticides, representing potential sources of water pollution. Also, the results allow supporting the design of agricultural practices and politics to improve land-use planning for the development of sustainable basins.


Subject(s)
Atrazine , Pesticides , Water Pollutants, Chemical , Pesticides/analysis , Water/analysis , Rivers , Atrazine/analysis , Ecosystem , Water Pollutants, Chemical/analysis , Environmental Monitoring , Agriculture , Crop Production
4.
Integr Environ Assess Manag ; 19(3): 684-697, 2023 May.
Article in English | MEDLINE | ID: mdl-36165001

ABSTRACT

Atrazine (ATZ) is the third most widely used herbicide in Argentina (10 000 t year-1 ) and is approved for sugar cane, flax, corn, sorghum, and tea. An assessment of the ATZ environmental impacts was conducted at the request of the Ministry of Environment and Sustainable Development of Argentina. A review of 541 national and international technical and scientific reports and a survey among agricultural technicians, applicators, and producers was done. The survey revealed that 94% of ATZ applications are terrestrial and use diversion exists, associated mainly with soybean cultivation. Atrazine was reported at high frequencies (50%-100%) in surface and groundwater, sediments, and soils, sometimes exceeding permitted limits. Several sublethal effects induced by ATZ on invertebrate and vertebrate species were found, sometimes at concentrations lower than those in water quality guidelines (<3 µg L-1 ) or the environmental concentrations found in Argentina. Available epidemiological or human health studies of local populations are extremely scarce. This assessment also demonstrated that herbicides are ubiquitous in the environment. The investigation highlights the need for further studies assessing the adverse effects of ATZ on local species, ecosystems, and human health. Therefore, the precautionary principle is recommended to promote better application standards and product traceability to reduce volumes entering the environment and to avoid use deviation. In addition, this work concluded that there is a need for reviewing the toxicological classification, establishing buffer zones for ATZ application, introducing specific management guidelines, and expanding local studies of toxicity, ecotoxicity, and human epidemiology for environmental and health risk assessments. This study could also serve as a preliminary risk evaluation for establishing a final regulatory action and for considering ATZ inclusion in Annex III of the Rotterdam Convention. Finally, the requirements to consider its inclusion in Annex A (Elimination) or B (Restriction) of the Stockholm Convention were evaluated and discussed, and information on the potential of long-range transport was the only criterion with no information to consider. Integr Environ Assess Manag 2023;19:684-697. © 2022 SETAC.


Subject(s)
Atrazine , Herbicides , Humans , Atrazine/toxicity , Ecosystem , Argentina , Herbicides/toxicity , Soil
5.
Water Air Soil Pollut ; 233(9): 372, 2022.
Article in English | MEDLINE | ID: mdl-36090741

ABSTRACT

The COVID-19 pandemic affected human life at every level. In this study, we analyzed genetic markers (N and ORF1ab, RNA genes) of SARS-CoV-2 in domestic wastewaters (DWW) in San Justo City (Santa Fe, Argentina), using reverse transcription-quantitative real-time PCR. Out of the 30 analyzed samples, 30% were positive for SARS-CoV-2 RNA. Of the total positive samples, 77% correspond to untreated DWW, 23% to pre-chlorination, and no SARS-CoV-2 RNA was registered at the post-chlorination sampling site. The viral loads of N and OFR1ab genes decreased significantly along the treatment process, and the increase in the number of viral copies of the N gene could anticipate, by 6 days, the number of clinical cases in the population. The concentration of chlorine recommended by the WHO (≥ 0.5 mg L-1 after at least 30 min of contact time at pH 8.0) successfully removed SARS-CoV-2 RNA from DWW. The efficiency of wastewater-based epidemiology (WBE) confirms the need to control and increase DWW treatment systems on a regional and global scale. This work could contribute to building a network for WBE to monitor SARS-CoV-2 in wastewaters during the pandemic waves and the epidemic remission phase. Supplementary Information: The online version contains supplementary material available at 10.1007/s11270-022-05772-w.

6.
AMB Express ; 12(1): 43, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35426531

ABSTRACT

The present work focuses on: (1) the evaluation of the potential of Chlorella fusca to grow and synthesize metabolites of biotechnological interest, after being exposed for fourteen days to urban wastewater (UW) from Malaga city (UW concentrations: 25%, 50%, 75%, and 100%); (2) the study of the capacity of C. fusca to bioremediate UW in photobioreactors at laboratory scale; and (3) the evaluation of the effect of UW on the physiological status of C. fusca, as photosynthetic capacity by using in vivo Chl a fluorescence related to photosystem II and the production of photosynthetic pigments. C. fusca cell density increased in treatments with 50% UW concentration, followed by the treatment with 100% UW, 75% UW, the control, and finally 25% UW. Protein content increased to 50.5% in 75% UW concentration. Stress induced to microalgal cultures favored the increase of lipid production, reaching a maximum of 16.7% in 100% UW concentration. The biological oxygen demand (BOD5) analysis indicated a 75% decrease in 100% UW concentration. Dissolved organic carbon (DOC) levels decreased by 41% and 40% in 50% UW and 100% UW concentration, and total nitrogen (TN) decreased by 55% in 50% UW concentration. The physiological status showed the stressful effect caused by the presence of UW on photosynthetic activity, with increasing impact as UW concentration grew. In the framework of circular economy, we seek to deepen this study to use the biomass of C. fusca to obtain metabolites of interest for biofuel production and other biotechnological areas.

7.
Environ Sci Pollut Res Int ; 29(38): 57395-57411, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35349065

ABSTRACT

Land use changes have led to the degradation of multiple ecosystem services and affected the quality of aquatic ecosystems. The aims of this study were (i) to assess the expansion of the agricultural border over the native forest of an Argentinean stream basin and (ii) to characterize the surface water quality, considering physicochemical parameters, and pesticide concentrations. The agricultural frontier expansion was estimated through the analysis of satellite image coverage. Samples of surface water were taken bimonthly for 2 years. The native forest cover decreased from 72% in 1987 to 60% in 2017 due to the sustained increase in agricultural activities. In surface water, the concentrations of cations decreased: Na > Ca > K > Mg, whereas those of anions decreased: HCO3 > > Cl > SO4 > PO4. The 84 surface water samples analyzed revealed 25 pesticides, including herbicides (44%), insecticides (28%), and fungicides (28%). Herbicides were detected in more than 60% of the samples. 2,4-D, atrazine, cyproconazole, diazinon, glyphosate, AMPA, and metolachlor were detected in all the study sites and sometimes, 2,4-D, atrazine, dicamba, and metolachlor concentrations exceeded the guideline levels. The high sampling frequency of this study and the two annual cycles of crops in the basin enabled sensing of pesticide molecules and concentrations that had not been previously detected, indicating diffuse contamination. These findings signal an emergent challenge on the Espinal agro-ecosystem integrity due to changes in land use.


Subject(s)
Atrazine , Herbicides , Pesticides , Water Pollutants, Chemical , 2,4-Dichlorophenoxyacetic Acid , Atrazine/analysis , Ecosystem , Environmental Monitoring/methods , Forests , Herbicides/chemistry , Pesticides/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Quality
8.
Sci Total Environ ; 788: 147676, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34029815

ABSTRACT

An increase in the spatial variability of rainfall is expected due to climate change. This implies increasing rainfall rates during spring and summer in the Pampas region, Argentina, period of maximum application of agrochemicals, which might cause an increase in pesticides and nutrients carried to surface water systems, as runoff by rainfall is one of the main pathways for diffuse pollution. The crops phenological stage can also affect pesticide and nutrient runoff since the applied agrochemicals and soil cover differ in each stage. In this study, we assessed the influence of rainfall and seasonal crop practices on water quality (nutrient and pesticide concentrations) in three streams in the Pampas region, Argentina. Five sampling campaigns were performed before and after three rainfall events during two different seasons of crop practices (SCP1, SCP2) and the physicochemical characteristics of the stream and runoff water were analyzed. The pesticide concentrations in the streams presented a general increase immediately after the rainfall event. Water quality was also affected, as an increase in ammonium, soluble reactive phosphorus (SRP), biological oxygen demand (BOD), and turbidity was observed. The crops phenological stage influenced pesticide and nutrient types and concentrations detected in the streams. During SCP1, mainly characterized by chemical fallow and sowing of soybean and vegetative growth and flowering of corn, ammonium, SRP, BOD, turbidity, and some pesticides, such as metolachlor, showed significantly higher results than those found in SCP2 (grain filling and vegetative growth of soybean and corn sowing). The pesticide concentrations detected in runoff water depended mostly on the pesticide solubility, the lateral slope of the streams, and the percentage of woody riparian vegetation cover. The results obtained show the relevance of assessing the influence of rainfall and crops phenological stages on the dynamics of surface water and on pesticide and nutrient runoff for environmental monitoring.

9.
Environ Sci Pollut Res Int ; 25(7): 6951-6968, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29273985

ABSTRACT

The present study focuses on the evaluation of metal (chromium, copper, and lead), arsenic, and pesticide (atrazine and endosulfan) contamination in freshwater streams of one of the most important agricultural and industrial areas of central-eastern Argentina, which has not been reported earlier. The environmental fate of inorganic microcontaminants and pesticides was assessed. Samples were collected monthly for a year. Pesticide concentrations were measured in water; metal and arsenic concentrations were measured in water and sediments, and physicochemical variables were analyzed. In most cases, metals and arsenic in water exceeded the established guideline levels for the protection of aquatic biota: 98 and 56.25% of the samples showed higher levels of Cr and Pb, while 81.25 and 85% of the samples presented higher values for Cu and As, respectively. Cr, Pb, Cu, and As exceeded 181.5 times, 41.6 times, 57.5 times, and 12.9 times, respectively, the guideline level values. In sediment samples, permitted levels were also surpassed by 40% for Pb, 15% for As, 4% for Cu, and 2% for Cr. Geoaccumulation Index (Igeo) demonstrated that most of the sediment samples were highly polluted by Cr and Cu and very seriously polluted by Pb, which indicates progressive deterioration of the sediment quality. Atrazine never exceeded them, but 27% of the 48 water samples contained total endosulfan that surpassed the guidelines. The findings of this study suggest risk to the freshwater biota over prolong periods and possible risk to humans if such type of contaminated water is employed for recreation or human use. Improper disposal of industrial effluents and agricultural runoffs need to be controlled, and proper treatment should be done before disposal to avoid further deterioration of the aquifers of this area.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Rivers/chemistry , Water Pollutants, Chemical/analysis , Water Pollution/analysis , Agriculture , Argentina , Ecosystem , Humans , Industry
SELECTION OF CITATIONS
SEARCH DETAIL
...