Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Med Phys ; 51(6): 4201-4218, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38721977

ABSTRACT

BACKGROUND: Spinal degeneration and vertebral compression fractures are common among the elderly that adversely affect their mobility, quality of life, lung function, and mortality. Assessment of vertebral fractures in chronic obstructive pulmonary disease (COPD) is important due to the high prevalence of osteoporosis and associated vertebral fractures in COPD. PURPOSE: We present new automated methods for (1) segmentation and labelling of individual vertebrae in chest computed tomography (CT) images using deep learning (DL), multi-parametric freeze-and-grow (FG) algorithm, and separation of apparently fused vertebrae using intensity autocorrelation and (2) vertebral deformity fracture detection using computed vertebral height features and parametric computational modelling of an established protocol outlined for trained human experts. METHODS: A chest CT-based automated method was developed for quantitative deformity fracture assessment following the protocol by Genant et al. The computational method was accomplished in the following steps: (1) computation of a voxel-level vertebral body likelihood map from chest CT using a trained DL network; (2) delineation and labelling of individual vertebrae on the likelihood map using an iterative multi-parametric FG algorithm; (3) separation of apparently fused vertebrae in CT using intensity autocorrelation; (4) computation of vertebral heights using contour analysis on the central anterior-posterior (AP) plane of a vertebral body; (5) assessment of vertebral fracture status using ratio functions of vertebral heights and optimized thresholds. The method was applied to inspiratory or total lung capacity (TLC) chest scans from the multi-site Genetic Epidemiology of COPD (COPDGene) (ClinicalTrials.gov: NCT00608764) study, and the performance was examined (n = 3231). One hundred and twenty scans randomly selected from this dataset were partitioned into training (n = 80) and validation (n = 40) datasets for the DL-based vertebral body classifier. Also, generalizability of the method to low dose CT imaging (n = 236) was evaluated. RESULTS: The vertebral segmentation module achieved a Dice score of .984 as compared to manual outlining results as reference (n = 100); the segmentation performance was consistent across images with the minimum and maximum of Dice scores among images being .980 and .989, respectively. The vertebral labelling module achieved 100% accuracy (n = 100). For low dose CT, the segmentation module produced image-level minimum and maximum Dice scores of .995 and .999, respectively, as compared to standard dose CT as the reference; vertebral labelling at low dose CT was fully consistent with standard dose CT (n = 236). The fracture assessment method achieved overall accuracy, sensitivity, and specificity of 98.3%, 94.8%, and 98.5%, respectively, for 40,050 vertebrae from 3231 COPDGene participants. For generalizability experiments, fracture assessment from low dose CT was consistent with the reference standard dose CT results across all participants. CONCLUSIONS: Our CT-based automated method for vertebral fracture assessment is accurate, and it offers a feasible alternative to manual expert reading, especially for large population-based studies, where automation is important for high efficiency. Generalizability of the method to low dose CT imaging further extends the scope of application of the method, particularly since the usage of low dose CT imaging in large population-based studies has increased to reduce cumulative radiation exposure.


Subject(s)
Image Processing, Computer-Assisted , Spinal Fractures , Tomography, X-Ray Computed , Spinal Fractures/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Artificial Intelligence , Automation , Radiography, Thoracic , Deep Learning , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Aged
2.
Article in English | MEDLINE | ID: mdl-38607551

ABSTRACT

RATIONALE: The European Respiratory Society (ERS) and the American Thoracic Society (ATS) recommend using z-scores, and the ATS has recommended using Global Lung Initiative (GLI)- "Global" race-neutral reference equations for spirometry interpretation. However, these recommendations have been variably implemented and the impact has not been widely assessed, both in clinical and research settings. OBJECTIVES: We evaluated the ERS/ATS airflow obstruction severity classification. METHODS: In the COPDGene Study (n = 10,108), airflow obstruction has been defined as a forced expiratory volume in one second to forced vital capacity (FEV1/FVC) ratio <0.70, with spirometry severity graded from class 1 to 4 based on race-specific percent predicted (pp) FEV1 cut-points as recommended by the Global Initiative for Chronic Obstructive Lung Disease (GOLD). We compared the GOLD approach, using NHANES III race-specific equations, to the application of GLI-Global equations using the ERS/ATS definition of airflow obstruction as FEV1/FVC ratio < lower limit of normal (LLN) and z-FEV1 cut-points of -1.645, -2.5, and -4 ("zGLI Global"). We tested the four-tier severity scheme for association with COPD outcomes. MEASUREMENTS AND MAIN RESULTS: The lowest agreement between ERS/ATS with zGLI Global and the GOLD classification was observed in individuals with milder disease (56.9% and 42.5% in GOLD 1 and 2) and race was a major determinant of redistribution. After adjustment for relevant covariates, zGLI Global distinguished all-cause mortality risk between normal spirometry and the first grade of COPD (Hazard Ratio 1.23, 95% CI 1.04-1.44, p=0.014), and showed a linear increase in exacerbation rates with increasing disease severity, in comparison to GOLD. CONCLUSIONS: The zGLI Global severity classification outperformed GOLD in the discrimination of survival, exacerbations, and imaging characteristics.

3.
Article in English | MEDLINE | ID: mdl-38471013

ABSTRACT

RATIONALE: BMI is associated with COPD mortality, but the underlying mechanisms are unclear. The effect of genetic variants aggregated into a polygenic score may elucidate causal mechanisms and predict risk. OBJECTIVES: To examine the associations of genetically predicted BMI with all-cause and cause-specific mortality in COPD. METHODS: We developed a polygenic score for BMI (PGSBMI) and tested for associations of the PGSBMI with all-cause, respiratory, and cardiovascular mortality in participants with COPD from the COPDGene, ECLIPSE, and Framingham Heart studies. We calculated the difference between measured BMI and PGS-predicted BMI (BMIdiff) and categorized participants into groups of discordantly low (BMIdiff < 20th percentile), concordant (BMIdiff between 20th - 80th percentile), and discordantly high (BMIdiff > 80th percentile) BMI. We applied Cox models, examined potential non-linear associations of the PGSBMI and BMIdiff with mortality, and summarized results with meta-analysis. MEASUREMENTS AND MAIN RESULTS: We observed significant non-linear associations of measured BMI and BMIdiff, but not PGSBMI, with all-cause mortality. In meta-analyses, a one standard deviation increase in the PGSBMI was associated with an increased hazard for cardiovascular mortality (HR=1.29, 95% CI=1.12-1.49), but not with respiratory or all-cause mortality. Compared to participants with concordant measured and genetically predicted BMI, those with discordantly low BMI had higher mortality risk for all-cause (HR=1.57, CI=1.41-1.74) and respiratory death (HR=2.01, CI=1.61-2.51). CONCLUSIONS: In people with COPD, higher genetically predicted BMI is associated with higher cardiovascular mortality but not respiratory mortality. Individuals with discordantly low BMI have higher all-cause and respiratory mortality compared to those with concordant BMI.

4.
Nat Commun ; 15(1): 1492, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374032

ABSTRACT

This study investigates correlates of anti-S1 antibody response following COVID-19 vaccination in a U.S. population-based meta-cohort of adults participating in longstanding NIH-funded cohort studies. Anti-S1 antibodies were measured from dried blood spots collected between February 2021-August 2022 using Luminex-based microsphere immunoassays. Of 6245 participants, mean age was 73 years (range, 21-100), 58% were female, and 76% were non-Hispanic White. Nearly 52% of participants received the BNT162b2 vaccine and 48% received the mRNA-1273 vaccine. Lower anti-S1 antibody levels are associated with age of 65 years or older, male sex, higher body mass index, smoking, diabetes, COPD and receipt of BNT16b2 vaccine (vs mRNA-1273). Participants with a prior infection, particularly those with a history of hospitalized illness, have higher anti-S1 antibody levels. These results suggest that adults with certain socio-demographic and clinical characteristics may have less robust antibody responses to COVID-19 vaccination and could be prioritized for more frequent re-vaccination.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Adult , Humans , Female , Male , Aged , Antibody Formation , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Antibodies, Viral , Demography , Vaccination
5.
Am J Respir Crit Care Med ; 209(1): 59-69, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37611073

ABSTRACT

Rationale: The identification of early chronic obstructive pulmonary disease (COPD) is essential to appropriately counsel patients regarding smoking cessation, provide symptomatic treatment, and eventually develop disease-modifying treatments. Disease severity in COPD is defined using race-specific spirometry equations. These may disadvantage non-White individuals in diagnosis and care. Objectives: Determine the impact of race-specific equations on African American (AA) versus non-Hispanic White individuals. Methods: Cross-sectional analyses of the COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease) cohort were conducted, comparing non-Hispanic White (n = 6,766) and AA (n = 3,366) participants for COPD manifestations. Measurements and Main Results: Spirometric classifications using race-specific, multiethnic, and "race-reversed" prediction equations (NHANES [National Health and Nutrition Examination Survey] and Global Lung Function Initiative "Other" and "Global") were compared, as were respiratory symptoms, 6-minute-walk distance, computed tomography imaging, respiratory exacerbations, and St. George's Respiratory Questionnaire. Application of different prediction equations to the cohort resulted in different classifications by stage, with NHANES and Global Lung Function Initiative race-specific equations being minimally different, but race-reversed equations moving AA participants to more severe stages and especially between the Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 0 and preserved ratio impaired spirometry groups. Classification using the established NHANES race-specific equations demonstrated that for each of GOLD stages 1-4, AA participants were younger, had fewer pack-years and more current smoking, but had more exacerbations, shorter 6-minute-walk distance, greater dyspnea, and worse BODE (body mass index, airway obstruction, dyspnea, and exercise capacity) scores and St. George's Respiratory Questionnaire scores. Differences were greatest in GOLD stages 1 and 2. Race-reversed equations reclassified 774 AA participants (43%) from GOLD stage 0 to preserved ratio impaired spirometry. Conclusions: Race-specific equations underestimated disease severity among AA participants. These effects were particularly evident in early disease and may result in late detection of COPD.


Subject(s)
Airway Obstruction , Pulmonary Disease, Chronic Obstructive , Humans , Nutrition Surveys , Cross-Sectional Studies , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Dyspnea/diagnosis , Spirometry , Forced Expiratory Volume
6.
Article in English | MEDLINE | ID: mdl-38048611

ABSTRACT

OBJECTIVES: There have been limited investigations of the prevalence and mortality impact of quantitative computed tomography (QCT) parenchymal lung features in rheumatoid arthritis (RA). We examined the cross-sectional prevalence and mortality associations of QCT features, comparing RA and non-RA participants. METHODS: We identified participants with and without RA in COPDGene, a multicentre cohort study of current or former smokers. Using a k-nearest neighbor quantifier, high resolution CT chest scans were scored for percentage of normal lung, interstitial changes, and emphysema. We examined associations between QCT features and RA using multivariable linear regression. After dichotomizing participants at the 75th percentile for each QCT feature among non-RA participants, we investigated mortality associations by RA/non-RA status and quartile 4 vs quartiles 1-3 of QCT features using Cox regression. We assessed for statistical interactions between RA and QCT features. RESULTS: We identified 82 RA cases and 8820 non-RA comparators. In multivariable linear regression, RA was associated with higher percentage of interstitial changes (ß = 1.7 ± 0.5, p= 0.0008) but not emphysema (ß = 1.3 ± 1.7, p= 0.44). Participants with RA and >75th percentile of emphysema had significantly higher mortality than non-RA participants (HR 5.86, 95%CI 3.75-9.13) as well as RA participants (HR 5.56, 95%CI 2.71-11.38) with ≤75th percentile of emphysema. There were statistical interactions between RA and emphysema for mortality (multiplicative p= 0.014; attributable proportion 0.53, 95%CI 0.30-0.70). CONCLUSIONS: Using machine learning-derived QCT data in a cohort of smokers, RA was associated with higher percentage of interstitial changes. The combination of RA and emphysema conferred >5-fold higher mortality.

7.
NPJ Genom Med ; 8(1): 36, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37903807

ABSTRACT

The consequences of returning infectious pathogen test results identified incidentally in research studies have not been well-studied. Concerns include identification of an important health issue for individuals, accuracy of research test results, public health impact, potential emotional distress for participants, and need for IRB permissions. Blood RNA-sequencing analysis for non-human RNA in 3984 participants from the COPDGene study identified 228 participants with evidence suggestive for hepatitis C virus (HCV) infection. We hypothesized that incidentally discovered HCV results could be effectively returned to COPDGene participants with attention to the identified concerns. In conjunction with a COPDGene Participant Advisory Panel, we developed and obtained IRB approval for a process of returning HCV research results and an HCV Follow-Up Study questionnaire to capture information about previous HCV diagnosis and treatment information and participant reactions to return of HCV results. During phone calls following the initial HCV notification letter, 84 of 124 participants who could be contacted (67.7%) volunteered that they had been previously diagnosed with HCV infection. Thirty-one of these 124 COPDGene participants were enrolled in the HCV Follow-Up Study. Five of the 31 HCV Follow-Up Study participants did not report a previous diagnosis of HCV. For four of these participants, subsequent clinical HCV testing confirmed HCV infection. Thus, 30/31 Follow-Up Study participants had confirmed HCV diagnoses, supporting the accuracy of the HCV research test results. However, the limited number of participants in the Follow-Up Study precludes an accurate assessment of the false-positive and false-negative rates of the research RNA sequencing evidence for HCV. Most HCV Follow-Up Study participants (29/31) were supportive of returning HCV research results, and most participants found the process for returning HCV results to be informative and not upsetting. Newly diagnosed participants were more likely to be pleased to learn about a potentially curable infection (p = 0.027) and showed a trend toward being more frightened by the potential health risks of HCV (p = 0.11). We conclude that HCV results identified incidentally during transcriptomic research studies can be successfully returned to research study participants with a carefully designed process.

8.
Rheumatology (Oxford) ; 62(SI3): SI286-SI295, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37871923

ABSTRACT

OBJECTIVE: To investigate the prevalence and mortality impact of interstitial lung abnormalities (ILAs) in RA and non-RA comparators. METHODS: We analysed associations between ILAs, RA, and mortality in COPDGene, a multicentre prospective cohort study of current and past smokers, excluding known interstitial lung disease (ILD) or bronchiectasis. All participants had research chest high-resolution CT (HRCT) reviewed by a sequential reading method to classify ILA as present, indeterminate or absent. RA cases were identified by self-report RA and DMARD use; non-RA comparators had neither an RA diagnosis nor used DMARDs. We examined the association and mortality risk of RA and ILA using multivariable logistic regression and Cox regression. RESULTS: We identified 83 RA cases and 8725 non-RA comparators with HRCT performed for research purposes. ILA prevalence was 16.9% in RA cases and 5.0% in non-RA comparators. After adjusting for potential confounders, including genetics, current/past smoking and other lifestyle factors, ILAs were more common among those with RA compared with non-RA [odds ratio 4.76 (95% CI 2.54, 8.92)]. RA with ILAs or indeterminate for ILAs was associated with higher all-cause mortality compared with non-RA without ILAs [hazard ratio (HR) 3.16 (95% CI 2.11, 4.74)] and RA cases without ILA [HR 3.02 (95% CI 1.36, 6.75)]. CONCLUSIONS: In this cohort of smokers, RA was associated with ILAs and this persisted after adjustment for current/past smoking and genetic/lifestyle risk factors. RA with ILAs in smokers had a 3-fold increased all-cause mortality, emphasizing the importance of further screening and treatment strategies for preclinical ILD in RA.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Lung Diseases, Interstitial , Humans , Prospective Studies , Smokers , Prevalence , Lung Diseases, Interstitial/diagnostic imaging , Lung Diseases, Interstitial/epidemiology , Lung Diseases, Interstitial/etiology , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/epidemiology , Lung
9.
J Clin Med ; 12(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37685608

ABSTRACT

BACKGROUND: Prior studies have demonstrated improved efficacy when intra-articular (IA) therapeutics are injected using ultrasound (US) guidance. The aim of this study was to determine if clinical improvement in pain and function after IA hyaluronic acid injections using US is associated with changes in SF volumes and biomarker proteins at 3 months. METHODS: 49 subjects with symptomatic knee OA, BMI < 40, and KL radiographic grade II or III participated. Subjects with adequate aspirated synovial fluid (SF) volumes received two US-guided IA-HA injections of HYADD4 (24 mg/3 mL) 7 days apart. Clinical evaluations at 3, 6, and 12 months included WOMAC, VAS, PCS scores, 6 MWD, and US-measured SF depth. SF and blood were collected at 3 months and analyzed for four serum OA biomarkers and fifteen SF proteins. RESULTS: Statistical differences were observed at 3, 6, and 12 months compared to baseline values, with improvements at 12 months for WOMAC scores (50%), VAS (54%), and PCS scores (24%). MMP10 levels were lower at 3 months without changes in SF volumes, serum levels of C2C, COMP, HA, CPII, or SF levels of IL-1 ra, IL-4, 6, 7, 8, 15, 18, ILGFBP-1, 3, and MMP 1, 2, 3, 8, 9. Baseline clinical features or SF biomarker protein levels did not predict responsiveness at 3 months. CONCLUSIONS: Clinical improvements were observed at 12 months using US needle guidance for IA HA, whereas only one SF protein biomarker protein was different at 3 months. Larger studies are needed to identify which SF biomarkers will predict which individual OA patients will receive the greatest benefit from IA therapeutics.

10.
Chest ; 164(6): 1492-1504, 2023 12.
Article in English | MEDLINE | ID: mdl-37507005

ABSTRACT

BACKGROUND: Race-specific spirometry reference equations are used globally to interpret lung function for clinical, research, and occupational purposes, but inclusion of race is under scrutiny. RESEARCH QUESTION: Does including self-identified race in spirometry reference equation formation improve the ability of predicted FEV1 values to explain quantitative chest CT abnormalities, dyspnea, or Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification? STUDY DESIGN AND METHODS: Using data from healthy adults who have never smoked in both the National Health and Nutrition Survey (2007-2012) and COPDGene study cohorts, race-neutral, race-free, and race-specific prediction equations were generated for FEV1. Using sensitivity/specificity, multivariable logistic regression, and random forest models, these equations were applied in a cross-sectional analysis to populations of individuals who currently smoke and individuals who formerly smoked to determine how they affected GOLD classification and the fit of models predicting quantitative chest CT phenotypes or dyspnea. RESULTS: Race-specific equations showed no advantage relative to race-neutral or race-free equations in models of quantitative chest CT phenotypes or dyspnea. Race-neutral reference equations reclassified up to 19% of Black participants into more severe GOLD classes, while race-neutral/race-free equations may improve model fit for dyspnea symptoms relative to race-specific equations. INTERPRETATION: Race-specific equations offered no advantage over race-neutral/race-free equations in three distinct explanatory models of dyspnea and chest CT scan abnormalities. Race-neutral/race-free reference equations may improve pulmonary disease diagnoses and treatment in populations highly vulnerable to lung disease.


Subject(s)
Lung Diseases , Pulmonary Disease, Chronic Obstructive , Adult , Humans , Cross-Sectional Studies , Dyspnea/diagnosis , Forced Expiratory Volume , Lung/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/diagnosis , Reference Values , Spirometry , Tomography, X-Ray Computed , Vital Capacity , Smoking
11.
Am J Respir Crit Care Med ; 208(4): 451-460, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37159910

ABSTRACT

Rationale: Cigarette smoking contributes to the risk of death through different mechanisms. Objectives: To determine how causes of and clinical features associated with death vary in tobacco cigarette users by lung function impairment. Methods: We stratified current and former tobacco cigarette users enrolled in Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) into normal spirometry, PRISm (Preserved Ratio Impaired Spirometry), Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1-2 COPD, and GOLD 3-4 COPD. Deaths were identified via longitudinal follow-up and Social Security Death Index search. Causes of death were adjudicated after a review of death certificates, medical records, and next-of-kin interviews. We tested associations between baseline clinical variables and all-cause mortality using multivariable Cox proportional hazards models. Measurements and Main Results: Over a 10.1-year median follow-up, 2,200 deaths occurred among 10,132 participants (age 59.5 ± 9.0 yr; 46.6% women). Death from cardiovascular disease was most frequent in PRISm (31% of deaths). Lung cancer deaths were most frequent in GOLD 1-2 (18% of deaths vs. 9-11% in other groups). Respiratory deaths outpaced competing causes of death in GOLD 3-4, particularly when BODE index ⩾7. St. George's Respiratory Questionnaire score ⩾25 was associated with higher mortality in all groups: Hazard ratio (HR), 1.48 (1.20-1.84) normal spirometry; HR, 1.40 (1.05-1.87) PRISm; HR, 1.80 (1.49-2.17) GOLD 1-2; HR, 1.65 (1.26-2.17) GOLD 3-4. History of respiratory exacerbations was associated with higher mortality in GOLD 1-2 and GOLD 3-4, quantitative emphysema in GOLD 1-2, and airway wall thickness in PRISm and GOLD 3-4. Conclusions: Leading causes of death vary by lung function impairment in tobacco cigarette users. Worse respiratory-related quality of life is associated with all-cause mortality regardless of lung function.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Tobacco Products , Aged , Female , Humans , Male , Middle Aged , Forced Expiratory Volume , Lung , Quality of Life , Spirometry
12.
J Gen Intern Med ; 38(13): 2988-2997, 2023 10.
Article in English | MEDLINE | ID: mdl-37072532

ABSTRACT

BACKGROUND: COPD diagnosis is tightly linked to the fixed-ratio spirometry criteria of FEV1/FVC < 0.7. African-Americans are less often diagnosed with COPD. OBJECTIVE: Compare COPD diagnosis by fixed-ratio with findings and outcomes by race. DESIGN: Genetic Epidemiology of COPD (COPDGene) (2007-present), cross-sectional comparing non-Hispanic white (NHW) and African-American (AA) participants for COPD diagnosis, manifestations, and outcomes. SETTING: Multicenter, longitudinal US cohort study. PARTICIPANTS: Current or former smokers with ≥ 10-pack-year smoking history enrolled at 21 clinical centers including over-sampling of participants with known COPD and AA. Exclusions were pre-existing non-COPD lung disease, except for a history of asthma. MEASUREMENTS: Subject diagnosis by conventional criteria. Mortality, imaging, respiratory symptoms, function, and socioeconomic characteristics, including area deprivation index (ADI). Matched analysis (age, sex, and smoking status) of AA vs. NHW within participants without diagnosed COPD (GOLD 0; FEV1 ≥ 80% predicted and FEV1/FVC ≥ 0.7). RESULTS: Using the fixed ratio, 70% of AA (n = 3366) were classified as non-COPD, versus 49% of NHW (n = 6766). AA smokers were younger (55 vs. 62 years), more often current smoking (80% vs. 39%), with fewer pack-years but similar 12-year mortality. Density distribution plots for FEV1 and FVC raw spirometry values showed disproportionate reductions in FVC relative to FEV1 in AA that systematically led to higher ratios. The matched analysis demonstrated GOLD 0 AA had greater symptoms, worse DLCO, spirometry, BODE scores (1.03 vs 0.54, p < 0.0001), and greater deprivation than NHW. LIMITATIONS: Lack of an alternative diagnostic metric for comparison. CONCLUSIONS: The fixed-ratio spirometric criteria for COPD underdiagnosed potential COPD in AA participants when compared to broader diagnostic criteria. Disproportionate reductions in FVC relative to FEV1 leading to higher FEV1/FVC were identified in these participants and associated with deprivation. Broader diagnostic criteria for COPD are needed to identify the disease across all populations.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Humans , Black or African American , Cohort Studies , Cross-Sectional Studies , Forced Expiratory Volume , Longitudinal Studies , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/epidemiology , Spirometry , Vital Capacity , Middle Aged , White , Smoking/adverse effects
13.
J Cachexia Sarcopenia Muscle ; 14(2): 1083-1095, 2023 04.
Article in English | MEDLINE | ID: mdl-36856146

ABSTRACT

BACKGROUND: Sarcopenia, or loss of skeletal muscle mass and decreased contractile strength, contributes to morbidity and mortality in patients with chronic obstructive pulmonary disease (COPD). The severity of sarcopenia in COPD is variable, and there are limited data to explain phenotype heterogeneity. Others have shown that COPD patients with sarcopenia have several hallmarks of cellular senescence, a potential mechanism of primary (age-related) sarcopenia. We tested if genetic contributors explain the variability in sarcopenic phenotype and accelerated senescence in COPD. METHODS: To identify gene variants [single nucleotide polymorphisms (SNPs)] associated with sarcopenia in COPD, we performed a genome-wide association study (GWAS) of fat free mass index (FFMI) in 32 426 non-Hispanic White (NHW) UK Biobank participants with COPD. Several SNPs within the fat mass and obesity-associated (FTO) gene were associated with sarcopenia that were validated in an independent COPDGene cohort (n = 3656). Leucocyte telomere length quantified in the UK Biobank cohort was used as a marker of senescence. Experimental validation was done by genetic depletion of FTO in murine skeletal myotubes exposed to prolonged intermittent hypoxia or chronic hypoxia because hypoxia contributes to sarcopenia in COPD. Molecular biomarkers for senescence were also quantified with FTO depletion in murine myotubes. RESULTS: Multiple SNPs located in the FTO gene were associated with sarcopenia in addition to novel SNPs both within and in proximity to the gene AC090771.2, which transcribes long non-coding RNA (lncRNA). To replicate our findings, we performed a GWAS of FFMI in NHW subjects from COPDGene. The SNP most significantly associated with FFMI was on chromosome (chr) 16, rs1558902A > T in the FTO gene (ß = 0.151, SE = 0.021, P = 1.40 × 10-12 for UK Biobank |ß= 0.220, SE = 0.041, P = 9.99 × 10-8 for COPDGene) and chr 18 SNP rs11664369C > T nearest to the AC090771.2 gene (ß = 0.129, SE = 0.024, P = 4.64 × 10-8 for UK Biobank |ß = 0.203, SE = 0.045, P = 6.38 × 10-6 for COPDGene). Lower handgrip strength, a measure of muscle strength, but not FFMI was associated with reduced telomere length in the UK Biobank. Experimentally, in vitro knockdown of FTO lowered myotube diameter and induced a senescence-associated molecular phenotype, which was worsened by prolonged intermittent hypoxia and chronic hypoxia. CONCLUSIONS: Genetic polymorphisms of FTO and AC090771.2 were associated with sarcopenia in COPD in independent cohorts. Knockdown of FTO in murine myotubes caused a molecular phenotype consistent with senescence that was exacerbated by hypoxia, a common condition in COPD. Genetic variation may interact with hypoxia and contribute to variable severity of sarcopenia and skeletal muscle molecular senescence phenotype in COPD.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Sarcopenia , Animals , Mice , Sarcopenia/genetics , Sarcopenia/complications , Hand Strength , Genome-Wide Association Study , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/complications , Polymorphism, Single Nucleotide , Hypoxia
14.
Chronic Obstr Pulm Dis ; 10(1): 112-121, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36599111

ABSTRACT

Introduction: Smokers with chronic obstructive pulmonary disease (COPD) are at increased risk of muscle weakness. There are limited data describing weakness in smokers with normal spirometry and preserved ratio-impaired spirometry (PRISm), 2 subgroups at risk of respiratory symptom burden and activity limitations. In this study, we evaluated the associations of 2 weakness measures, sit-to-stand (STS) and handgrip strength (HGS), with clinical outcomes in smokers with COPD, normal spirometry, and PRISm. Methods: We evaluated 1972 current and former smokers from the COPD Genetic Epidemiology (COPDGene®) cohort with STS and HGS measurements at their 10-year study visit. Multivariable regression modeling was used to assess associations between weakness measures and the 6-minute walk distance (6MWD) test, the St George's Respiratory Questionnaire (SGRQ), the Short-Form-36 (SF-36), severe exacerbations, and prospective mortality, reported as standardized coefficients (ß), odds ratios (ORs), or hazard ratios (HRs). Results: Compared with HGS, STS was more strongly associated with the 6MWD (ß=0.45, p<0.001 versus. ß=0.25, p<0.001), SGRQ (ß=-0.24, p<0.001 versus ß=-0.18, p<0.001), SF-36 Physical Functioning (ß=0.36, p<0.001 versus ß=0.25, p<0.001), severe exacerbations (OR 0.95, p=0.04 versus OR 0.97, p=0.01), and prospective mortality (HR 0.83, p=0.001 versus HR 0.94, p=0.03). Correlations remained after stratification by spirometric subgroups. Compared with males, females had larger magnitude effect sizes between STS and clinical outcomes. Conclusions: STS and HGS are easy to perform weakness measures that provide important information about functional performance, health-related quality of life, severe exacerbations, and survival in smokers, regardless of spirometric subgroup. This iterates the importance of screening current and former smokers for weakness in the outpatient setting.

15.
Respir Res ; 24(1): 20, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36658542

ABSTRACT

BACKGROUND: Parameters from maximal expiratory flow-volume curves (MEFVC) have been linked to CT-based parameters of COPD. However, the association between MEFVC shape and phenotypes like emphysema, small airways disease (SAD) and bronchial wall thickening (BWT) has not been investigated. RESEARCH QUESTION: We analyzed if the shape of MEFVC can be linked to CT-determined emphysema, SAD and BWT in a large cohort of COPDGene participants. STUDY DESIGN AND METHODS: In the COPDGene cohort, we used principal component analysis (PCA) to extract patterns from MEFVC shape and performed multiple linear regression to assess the association of these patterns with CT parameters over the COPD spectrum, in mild and moderate-severe COPD. RESULTS: Over the entire spectrum, in mild and moderate-severe COPD, principal components of MEFVC were important predictors for the continuous CT parameters. Their contribution to the prediction of emphysema diminished when classical pulmonary function test parameters were added. For SAD, the components remained very strong predictors. The adjusted R2 was higher in moderate-severe COPD, while in mild COPD, the adjusted R2 for all CT outcomes was low; 0.28 for emphysema, 0.21 for SAD and 0.19 for BWT. INTERPRETATION: The shape of the maximal expiratory flow-volume curve as analyzed with PCA is not an appropriate screening tool for early disease phenotypes identified by CT scan. However, it contributes to assessing emphysema and SAD in moderate-severe COPD.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Principal Component Analysis , Smoking , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/genetics , Spirometry , Phenotype , Forced Expiratory Volume
16.
HGG Adv ; 4(1): 100163, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36568030

ABSTRACT

Anthropometric traits, measuring body size and shape, are highly heritable and significant clinical risk factors for cardiometabolic disorders. These traits have been extensively studied in genome-wide association studies (GWASs), with hundreds of genome-wide significant loci identified. We performed a whole-exome sequence analysis of the genetics of height, body mass index (BMI) and waist/hip ratio (WHR). We meta-analyzed single-variant and gene-based associations of whole-exome sequence variation with height, BMI, and WHR in up to 22,004 individuals, and we assessed replication of our findings in up to 16,418 individuals from 10 independent cohorts from Trans-Omics for Precision Medicine (TOPMed). We identified four trait associations with single-nucleotide variants (SNVs; two for height and two for BMI) and replicated the LECT2 gene association with height. Our expression quantitative trait locus (eQTL) analysis within previously reported GWAS loci implicated CEP63 and RFT1 as potential functional genes for known height loci. We further assessed enrichment of SNVs, which were monogenic or syndromic variants within loci associated with our three traits. This led to the significant enrichment results for height, whereas we observed no Bonferroni-corrected significance for all SNVs. With a sample size of ∼20,000 whole-exome sequences in our discovery dataset, our findings demonstrate the importance of genomic sequencing in genetic association studies, yet they also illustrate the challenges in identifying effects of rare genetic variants.


Subject(s)
Exome , Genome-Wide Association Study , Humans , Exome/genetics , Body Mass Index , Quantitative Trait Loci/genetics , Anthropometry , Intercellular Signaling Peptides and Proteins , Cell Cycle Proteins
17.
Chest ; 163(2): 292-302, 2023 02.
Article in English | MEDLINE | ID: mdl-36167120

ABSTRACT

BACKGROUND: Studies have shown that COPD and smoking are associated with increased suicide risk. To date, there are no prospective studies examining suicide risk among individuals with smoking exposure along a spectrum of pulmonary diseases ranging from normal spirometry to severe COPD. RESEARCH QUESTION: Which clinical variables predict death by suicide or overdose of indeterminate intent in a large cohort of individuals with smoking exposure within the Genetic Epidemiology of COPD (COPDGene) study? STUDY DESIGN AND METHODS: We studied data from 9,930 participants involved in COPDGene, a multisite, prospective cohort study of individuals with smoking exposure. Primary cause of adjudicated deaths was identified by using death certificates, family reports, and medical records. Time to death by suicide/overdose was examined as the primary outcome in Cox regression models including age, sex, race, BMI, pack-years, current smoking status, airflow limitation (FEV1 % predicted), dyspnea (modified Medical Research Council scale score ≥ 2), 6-min walk distance, supplemental oxygen use, and severe exacerbations in the prior year with time-varying covariates and other causes of death as a competing risk. RESULTS: The cohort was 47% female and 33% Black (67% White); they had a mean ± SD age of 59.6 ± 9.0 years and a mean FEV1 % predicted of 76.1 ± 25.5. Sixty-three individuals died by suicide/overdose. Factors associated with risk of suicide/overdose were current smoking (hazard ratio [HR], 6.44; 95% CI, 2.64-15.67), use of sedative/hypnotics (HR, 2.33; 95% CI, 1.24-4.38), and dyspnea (HR, 2.23; 95% CI, 1.34-3.70). Lower risk was associated with older age (per-decade HR, 0.45; 95% CI, 0.31-0.67), higher BMI (HR, 0.95; 95% CI, 0.91-0.99), and African-American race (HR, 0.41; 95% CI, 0.23-0.74). Severity of airflow limitation (FEV % predicted) was not associated with suicide risk. INTERPRETATION: In this well-characterized cohort of individuals with smoking exposure with and without COPD, risk factors for suicide/overdose were identified that emphasize the subjective experience of illness over objective assessments of lung function.


Subject(s)
Drug Overdose , Pulmonary Disease, Chronic Obstructive , Humans , Female , Middle Aged , Aged , Male , Follow-Up Studies , Prospective Studies , Smoking/adverse effects , Smoking/epidemiology , Risk Factors , Dyspnea , Biomarkers , Forced Expiratory Volume
18.
Respir Res ; 23(1): 311, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36376854

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a disease of accelerated aging and is associated with comorbid conditions including osteoporosis and sarcopenia. These extrapulmonary conditions are highly prevalent yet frequently underdiagnosed and overlooked by pulmonologists in COPD treatment and management. There is evidence supporting a role for bone-muscle crosstalk which may compound osteoporosis and sarcopenia risk in COPD. Chest CT is commonly utilized in COPD management, and we evaluated its utility to identify low bone mineral density (BMD) and reduced pectoralis muscle area (PMA) as surrogates for osteoporosis and sarcopenia. We then tested whether BMD and PMA were associated with morbidity and mortality in COPD. METHODS: BMD and PMA were analyzed from chest CT scans of 8468 COPDGene participants with COPD and controls (smoking and non-smoking). Multivariable regression models tested the relationship of BMD and PMA with measures of function (6-min walk distance (6MWD), handgrip strength) and disease severity (percent emphysema and lung function). Multivariable Cox proportional hazards models were used to evaluate the relationship between sex-specific quartiles of BMD and/or PMA derived from non-smoking controls with all-cause mortality. RESULTS: COPD subjects had significantly lower BMD and PMA compared with controls. Higher BMD and PMA were associated with increased physical function and less disease severity. Participants with the highest BMD and PMA quartiles had a significantly reduced mortality risk (36% and 46%) compared to the lowest quartiles. CONCLUSIONS: These findings highlight the potential for CT-derived BMD and PMA to characterize osteoporosis and sarcopenia using equipment available in the pulmonary setting.


Subject(s)
Osteoporosis , Pulmonary Disease, Chronic Obstructive , Sarcopenia , Humans , Male , Female , Sarcopenia/diagnostic imaging , Sarcopenia/epidemiology , Hand Strength , Osteoporosis/diagnostic imaging , Osteoporosis/epidemiology , Osteoporosis/complications , Tomography, X-Ray Computed/adverse effects , Morbidity , Muscles , Bone Density
19.
Front Digit Health ; 4: 911634, 2022.
Article in English | MEDLINE | ID: mdl-36148212

ABSTRACT

The growing focus on healthcare transformation (i.e., new healthcare delivery models) raises interesting issues related to research design, methodology, and funding. More than 20 years have passed since the Institute of Medicine first called for the transition to digital health with a focus on system-wide change. Yet progress in healthcare delivery system change has been painfully slow. A knowledge gap exists; research has been inadequate and critical information is lacking. Despite calls by the National Academies of Science, Engineering, and Medicine for convergent, team-based transdisciplinary research with societal impact, the preponderance of healthcare research and funding continues to support more traditional siloed discipline research approaches. The lack of impact on healthcare delivery suggests that it is time to step back and consider differences between traditional science research methods and the realities of research in the domain of transformational change. The proposed new concepts in research design, methodologies, and funding are a needed step to advance the science. The Introduction looks at the growing gap in expectations for transdisciplinary convergent research and prevalent practices in research design, methodologies, and funding. The second section summarizes current expectations and drivers related to digital health transformation and the complex system problem of healthcare fragmentation. The third section then discusses strengths and weaknesses of current research and practice with the goal of identifying gaps. The fourth section introduces the emerging science of healthcare delivery and associated research methodologies with a focus on closing the gaps between research and translation at the frontlines. The final section concludes by proposing new transformational science research methodologies and offers evidence that suggests how and why they better align with the aims of digital transformation in healthcare delivery and could significantly accelerate progress in achieving them. It includes a discussion of challenges related to grant funding for non-traditional research design and methods. The findings have implications broadly beyond healthcare to any research that seeks to achieve high societal impact.

20.
Radiology ; 305(3): 699-708, 2022 12.
Article in English | MEDLINE | ID: mdl-35916677

ABSTRACT

Background The prevalence of chronic obstructive pulmonary disease (COPD) in women is fast approaching that in men, and women experience greater symptom burden. Although sex differences in emphysema have been reported, differences in airways have not been systematically characterized. Purpose To evaluate whether structural differences in airways may underlie some of the sex differences in COPD prevalence and clinical outcomes. Materials and Methods In a secondary analyses of a multicenter study of never-, current-, and former-smokers enrolled from January 2008 to June 2011 and followed up longitudinally until November 2020, airway disease on CT images was quantified using seven metrics: airway wall thickness, wall area percent, and square root of the wall thickness of a hypothetical airway with internal perimeter of 10 mm (referred to as Pi10) for airway wall; and lumen diameter, airway volume, total airway count, and airway fractal dimension for airway lumen. Least-squares mean values for each airway metric were calculated and adjusted for age, height, ethnicity, body mass index, pack-years of smoking, current smoking status, total lung capacity, display field of view, and scanner type. In ever-smokers, associations were tested between each airway metric and postbronchodilator forced expiratory volume in 1 second (FEV1)-to-forced vital capacity (FVC) ratio, modified Medical Research Council dyspnea scale, St George's Respiratory Questionnaire score, and 6-minute walk distance. Multivariable Cox proportional hazards models were created to evaluate the sex-specific association between each airway metric and mortality. Results In never-smokers (n = 420), men had thicker airway walls than women as quantified on CT images for segmental airway wall area percentage (least-squares mean, 47.68 ± 0.61 [standard error] vs 45.78 ± 0.55; difference, -1.90; P = .02), whereas airway lumen dimensions were lower in women than men after accounting for height and total lung capacity (segmental lumen diameter, 8.05 mm ± 0.14 vs 9.05 mm ± 0.16; difference, -1.00 mm; P < .001). In ever-smokers (n = 9363), men had greater segmental airway wall area percentage (least-squares mean, 52.19 ± 0.16 vs 48.89 ± 0.18; difference, -3.30; P < .001), whereas women had narrower segmental lumen diameter (7.80 mm ± 0.05 vs 8.69 mm ± 0.04; difference, -0.89; P < .001). A unit change in each of the airway metrics (higher wall or lower lumen measure) resulted in lower FEV1-to-FVC ratio, more dyspnea, poorer respiratory quality of life, lower 6-minute walk distance, and worse survival in women compared with men (all P < .01). Conclusion Airway lumen sizes quantified at chest CT were smaller in women than in men after accounting for height and lung size, and these lower baseline values in women conferred lower reserves against respiratory morbidity and mortality for equivalent changes compared with men. © RSNA, 2022 Online supplemental material is available for this article.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Quality of Life , Female , Humans , Male , Sex Characteristics , Forced Expiratory Volume , Tomography, X-Ray Computed/methods , Lung/diagnostic imaging , Dyspnea
SELECTION OF CITATIONS
SEARCH DETAIL
...