Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 117(2): 555-563, 2024 04 12.
Article in English | MEDLINE | ID: mdl-38381578

ABSTRACT

Seedcorn maggot, Delia platura (Meigen) (Diptera: Anthomyiidae), is an economically important early-season pest of corn and soybean in the United States. Adult seedcorn maggot is attracted to decomposing plant residues for oviposition, creating potential management issues where growers typically use tillage to incorporate fertility amendments and to create a seedbed. The use of growing degree-day models to time planting dates is an important tool for effectively managing this pest, but their use has not been examined in organic crop production. Here, we report the results of experiments to determine the effects of cover crops, tillage, and relative planting date on seedcorn maggot in corn and soybean in 2 experiments: The first during the transition to organic from conventional management and the second during the 3 yr following organic certification in central Pennsylvania, United States. Overall, delaying the planting date by 1-2 wk reduced fly emergence in corn, but not in soybean in both experiments. Seedcorn maggot emergence was also consistently greater in corn than in soybean, with 6 times more flies in corn than in soy. About 15 times more seedcorn maggot flies emerged from corn in treatments in which cover crops were managed with tillage compared to treatments in which cover crops were terminated with a roller-crimper followed by no-till planting of corn. Fly emergence was negatively related to the proportion of legumes in the cover crop mixture preceding corn. These results can help inform soil, cover crop, and crop decisions for organic growers in the Mid-Atlantic United States.


Subject(s)
Crops, Agricultural , Diptera , Female , Animals , Larva , Soil , Zea mays , Glycine max , Agriculture
2.
Environ Entomol ; 49(4): 865-875, 2020 08 20.
Article in English | MEDLINE | ID: mdl-32566947

ABSTRACT

In organic agronomic cropping systems, the use of synthetic insecticides and transgenic varieties are prohibited and producers rely mainly on biological control, tillage, crop rotation, and other cultural practices to manage pests. We measured damage to organic corn (Zea mays L.) from multiple invertebrate pests, including slugs (Gastropoda: Mollusca), European corn borer (Ostrinia nubilalis Hübner), corn earworm (Helicoverpa zea Boddie), and fall armyworm (Spodoptera frugiperda Smith), early and late in the growing season in four cropping systems that varied in tillage frequency and intensity and in winter cover crop species. Specific management tactics included two cover crop mixtures preceding corn, the use of a roller-crimper or tillage to terminate cover crops preceding corn, and the establishment of interseeded cover crops after corn emergence. Prevalence of early-season damage was high, but severity of damage was very low and unrelated to corn yield. The proportion of corn plants affected by chewing pests early in the season was lower in plots in which tillage compared to a roller-crimper was used to terminate cover crops. Cropping system did not affect the numbers of late-season caterpillar pests or corn yield. Predation by natural enemies appeared to effectively maintain damage from chewing pests below yield-damaging levels. These results support the inclusion of winter and interseeded cover crops in organic agronomic crop rotations to gain environmental benefits without increasing risks of damage by insect pests.


Subject(s)
Moths , Zea mays , Animals , Crops, Agricultural , Prevalence , Seasons
3.
Proc Biol Sci ; 282(1803): 20142471, 2015 Mar 22.
Article in English | MEDLINE | ID: mdl-25694627

ABSTRACT

The synthesis of secondary metabolites is a hallmark of plant defence against herbivores. These compounds may be detrimental to consumers, but can also protect herbivores against parasites. Floral nectar commonly contains secondary metabolites, but little is known about the impacts of nectar chemistry on pollinators, including bees. We hypothesized that nectar secondary metabolites could reduce bee parasite infection. We inoculated individual bumblebees with Crithidia bombi, an intestinal parasite, and tested effects of eight naturally occurring nectar chemicals on parasite population growth. Secondary metabolites strongly reduced parasite load, with significant effects of alkaloids, terpenoids and iridoid glycosides ranging from 61 to 81%. Using microcolonies, we also investigated costs and benefits of consuming anabasine, the compound with the strongest effect on parasites, in infected and uninfected bees. Anabasine increased time to egg laying, and Crithidia reduced bee survival. However, anabasine consumption did not mitigate the negative effects of Crithidia, and Crithidia infection did not alter anabasine consumption. Our novel results highlight that although secondary metabolites may not rescue survival in infected bees, they may play a vital role in mediating Crithidia transmission within and between colonies by reducing Crithidia infection intensities.


Subject(s)
Alkaloids , Bees/parasitology , Crithidia , Glycosides , Plant Nectar/chemistry , Terpenes , Anabasine , Animals , Bees/physiology , Disease Resistance , Host-Parasite Interactions , Secondary Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...