Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Arch Inst Pasteur Tunis ; 91(1-4): 33-41, 2014.
Article in French | MEDLINE | ID: mdl-26402968

ABSTRACT

Toxins from animal venoms are small peptide molecules able to interact with a wide range of specific cellular targets in order to modulate their activity, which enables them to act in many physiological and pathological processes. Recently, structuralandpharmacologicalstudieshaveshown the involvement of these biological agents in the pathogenesis of many diseases like diabetes, cancer paralysis, autoimmune diseases or neurological disorders. Nevertheless, the only punfication from scorpion venoms of theses peptides still doesn't offer sufficient quantities to allow conducting the pharmacological and structure-function studies. The solid phases peptide synthesis (SPPS) is a methodology that allows us to produce non-limited quantities of structural analogsfrom these peptides-toxins in. In this paper; we will try to highlight the importance of this methodology, and peptide engineering in general, in obtaining peptides of interest. We are also going to elucidate the problems encountered during the chemical synthesis of some betides and explain how to overcome them.


Subject(s)
Scorpion Venoms/chemical synthesis , Solid-Phase Synthesis Techniques/methods , Animals , Peptides, Cyclic/chemical synthesis
2.
J Biomol Struct Dyn ; 26(1): 75-82, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18533728

ABSTRACT

Maurotoxin (MTX) is a 34-mer scorpion toxin cross-linked by four disulphide bridges that acts on various K+ channel types. It folds according to an alpha/beta scaffold, i.e., a helix connected to a two stranded beta-sheet by two disulphide bridges. In a former study, various parameters that affect the oxidation and folding of the reduced form of synthetic MTX were investigated in vitro. It was found that MTX achieves its final 3-D structure by evolving over time through a series of oxidation intermediates, from the least to the most oxidized species. MTX oxidative intermediates can be studied by iodoacetamide alkylation of free cysteine residues followed by mass spectrometry analysis. Here, we have analysed the effect of Cu2+ (0.1 to 50 mM) on the kinetics of MTX oxidative folding and found that it dramatically speeds up the formation of the four-disulphide bridged, native-like, MTX (maximal production within 30 minutes instead of > 60 hours). This catalysing effect of Cu2+ was found to be concentration-dependent, reaching a plateau at 10 mM copper ions. Cu2+ was also found to prevent the slow transition of a three disulphide-bridged MTX intermediate towards the final four disulphide-bridged product (12% of total MTX). The data are discussed in light of the potential effects of Cu2+ on MTX secondary structure formation, disulphide bridging and peptidyl prolyl cis-trans isomerization.


Subject(s)
Copper/pharmacology , Disulfides/chemistry , Neurotoxins/chemistry , Protein Folding , Scorpion Venoms/chemistry , Scorpion Venoms/metabolism , Alkylation , Amino Acid Sequence , Animals , Circular Dichroism , In Vitro Techniques , Iodoacetamide/pharmacology , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Oxidation-Reduction , Protein Structure, Secondary , Scorpion Venoms/chemical synthesis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
3.
Life Sci ; 76(4): 367-77, 2004 Dec 10.
Article in English | MEDLINE | ID: mdl-15530499

ABSTRACT

It has been shown that A2A adenosine receptors are implicated in pain modulation. The precise mechanism by which activation of A2A receptors produces analgesic effects, however, remains unclear. The aim of this study was to investigate the possible involvement of apamin-sensitive calcium-activated potassium channels (SKCa) and voltage-gated potassium (Kv) channels in A2A receptor activation-induced analgesic effects. Using mice, we evaluated the influence of apamin, a non specific blocker of SKCa channels, Lei-Dab7 (an analog of scorpion Leiurotoxin), a selective blocker of SKCa2 channels, and kaliotoxin (KTX) a Kv channel blocker, on the CGS 21680 (A2A adenosine receptor agonist)-induced increases in hot plate and tail pinch latencies. All drugs were injected in mice via the intracerebroventricular route. We found that apamin and Lei-Dab7, but not KTX, reduced antinociception produced by CGS21680 on the hot plate and tail pinch tests in a dose dependent manner. Lei-Dab 7 was more potent than apamin in this regard. We conclude that SKCa but not Kv channels are implicated in CGS 21680-induced antinociception.


Subject(s)
Adenosine A2 Receptor Antagonists , Adenosine/analogs & derivatives , Adenosine/pharmacology , Analgesics/pharmacology , Pain/prevention & control , Phenethylamines/pharmacology , Potassium Channels, Calcium-Activated/antagonists & inhibitors , Potassium Channels, Voltage-Gated/antagonists & inhibitors , Adenosine/administration & dosage , Analgesics/administration & dosage , Animals , Apamin/pharmacology , Dose-Response Relationship, Drug , Drug Antagonism , Drug Therapy, Combination , Injections, Intraventricular , Male , Mice , Mice, Inbred C57BL , Pain Measurement , Pain Threshold/drug effects , Phenethylamines/administration & dosage , Scorpion Venoms/pharmacology
4.
Biochem J ; 358(Pt 3): 681-92, 2001 Sep 15.
Article in English | MEDLINE | ID: mdl-11535129

ABSTRACT

Maurotoxin (MTX) is a 34-mer scorpion toxin cross-linked by four disulphide bridges that acts on various K(+) channel subtypes. MTX adopts a disulphide bridge organization of the type C1-C5, C2-C6, C3-C4 and C7-C8, and folds according to the common alpha/beta scaffold reported for other known scorpion toxins. Here we have investigated the process and kinetics of the in vitro oxidation/folding of reduced synthetic L-MTX (L-sMTX, where L-MTX contains only L-amino acid residues). During the oxidation/folding of reduced L-sMTX, the oxidation intermediates were blocked by iodoacetamide alkylation of free cysteine residues, and analysed by MS. The L-sMTX intermediates appeared sequentially over time from the least (intermediates with one disulphide bridge) to the most oxidized species (native-like, four-disulphide-bridged L-sMTX). The mathematical formulation of the diffusion-collision model being inadequate to accurately describe the kinetics of oxidation/folding of L-sMTX, we have formulated a derived mathematical description that better fits the experimental data. Using this mathematical description, we have compared for the first time the oxidation/folding of L-sMTX with that of D-sMTX, its stereoisomer that contains only D-amino acid residues. Several experimental parameters, likely to affect the oxidation/folding process, were studied further; these included temperature, pH, ionic strength, redox potential and concentration of reduced toxin. We also assessed the effects of some cellular enzymes, peptidylprolyl cis-trans isomerase (PPIase) and protein disulphide isomerase (PDI), on the folding pathways of reduced L-sMTX and D-sMTX. All the parameters tested affect the oxidative folding of sMTX, and the kinetics of this process were indistinguishable for L-sMTX and D-sMTX, except when stereospecific enzymes were used. The most efficient conditions were found to be: 50 mM Tris/HCl/1.4 mM EDTA, pH 7.5, supplemented by 0.5 mM PPIase and 50 units/ml PDI for 0.1 mM reduced compound. These data represent the first report of potent stereoselective effects of cellular enzymes on the oxidation/folding of a scorpion toxin.


Subject(s)
Protein Folding , Scorpion Venoms/chemistry , Scorpion Venoms/metabolism , Alkylation , Disulfides , Humans , Indicators and Reagents , Iodoacetamide , Kinetics , Models, Theoretical , Neurotoxins/chemistry , Oxidation-Reduction , Peptidylprolyl Isomerase/metabolism , Protein Disulfide-Isomerases/metabolism , Recombinant Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
5.
J Biol Chem ; 276(46): 43145-51, 2001 Nov 16.
Article in English | MEDLINE | ID: mdl-11527975

ABSTRACT

Apamin-sensitive small conductance calcium-activated potassium channels (SKCa1-3) mediate the slow afterhyperpolarization in neurons, but the molecular identity of the channel has not been defined because of the lack of specific inhibitors. Here we describe the structure-based design of a selective inhibitor of SKCa2. Leiurotoxin I (Lei) and PO5, peptide toxins that share the RXCQ motif, potently blocked human SKCa2 and SKCa3 but not SKCa1, whereas maurotoxin, Pi1, Tskappa, and PO1 were ineffective. Lei blocked these channels more potently than PO5 because of the presence of Ala(1), Phe(2), and Met(7). By replacing Met(7) in the RXCQ motif of Lei with the shorter, unnatural, positively charged diaminobutanoic acid (Dab), we generated Lei-Dab(7), a selective SKCa2 inhibitor (K(d) = 3.8 nm) that interacts with residues in the external vestibule of the channel. SKCa3 was rendered sensitive to Lei-Dab(7) by replacing His(521) with the corresponding SKCa2 residue (Asn(367)). Intracerebroventricular injection of Lei-Dab(7) into mice resulted in no gross central nervous system toxicity at concentrations that specifically blocked SKCa2 homotetramers. Lei-Dab(7) will be a useful tool to investigate the functional role of SKCa2 in mammalian tissues.


Subject(s)
Peptides/chemistry , Potassium Channel Blockers , Potassium Channels, Calcium-Activated/antagonists & inhibitors , Potassium Channels/chemistry , Scorpion Venoms/pharmacology , Alanine/pharmacology , Amino Acid Sequence , Animals , Arginine/chemistry , COS Cells , Cell Line , Cloning, Molecular , Dose-Response Relationship, Drug , Electrophysiology , Humans , Kinetics , Methionine/pharmacology , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Neurotoxins/pharmacology , PC12 Cells , Peptides/pharmacology , Phenylalanine/pharmacology , Protein Binding , Rats , Scorpion Venoms/chemistry , Sequence Homology, Amino Acid , Small-Conductance Calcium-Activated Potassium Channels , Threonine/chemistry , Transfection , Valine/chemistry , gamma-Aminobutyric Acid/pharmacology
6.
FEBS Lett ; 489(2-3): 202-7, 2001 Feb 02.
Article in English | MEDLINE | ID: mdl-11165250

ABSTRACT

Maurotoxin (MTX) is a 34-residue toxin that has been isolated from the venom of the chactidae scorpion Scorpio maurus palmatus, and characterized. Together with Pi1 and HsTx1, MTX belongs to a family of short-chain four-disulfide-bridged scorpion toxins acting on potassium channels. However, contrary to other members of this family, MTX exhibits an uncommon disulfide bridge organization of the type C1-C5, C2-C6, C3-C4 and C7-C8, versus C1-C5, C2-C6, C3-C7 and C4-C8 for both Pi1 and HsTx1. Here, we report that the substitution of MTX proline residues located at positions 12 and/or 20, adjacent to C3 (Cys(13)) and C4 (Cys(19)), results in conventional Pi1- and HsTx1-like arrangement of the half-cystine pairings. In this case, this novel disulfide bridge arrangement is without obvious incidence on the overall three-dimensional structure of the toxin. Pharmacological assays of this structural analog, [A(12),A(20)]MTX, reveal that the blocking activities on Shaker B and rat Kv1.2 channels remain potent whereas the peptide becomes inactive on rat Kv1.3. These data indicate, for the first time, that discrete point mutations in MTX can result in a marked reorganization of the half-cystine pairings, accompanied with a novel pharmacological profile for the analog.


Subject(s)
Disulfides/chemistry , Potassium Channels, Voltage-Gated , Proline/chemistry , Scorpion Venoms/chemistry , Amino Acid Sequence , Animals , Apamin/metabolism , Binding, Competitive , Dose-Response Relationship, Drug , Female , Iodine Radioisotopes , Kv1.2 Potassium Channel , Kv1.3 Potassium Channel , Magnetic Resonance Spectroscopy , Membrane Potentials/drug effects , Molecular Sequence Data , Mutation , Oocytes/drug effects , Oocytes/metabolism , Oocytes/physiology , Peptides/antagonists & inhibitors , Peptides/genetics , Peptides/physiology , Potassium Channel Blockers , Potassium Channels/genetics , Potassium Channels/physiology , Proline/genetics , Protein Conformation , Rats , Scorpion Venoms/metabolism , Scorpion Venoms/pharmacology , Sequence Analysis, Protein , Shaker Superfamily of Potassium Channels , Synaptosomes/metabolism , Xenopus
7.
Haemostasis ; 31(3-6): 207-10, 2001.
Article in English | MEDLINE | ID: mdl-11910186

ABSTRACT

Lebetins from Macrovipera lebetina snake venom constitute a new class of inhibitors of platelet aggregation. There are two groups of peptides: lebetin 1 (L1; 11- to 13-mer) and lebetin 2 (L2; 37- to 38-mer). The short lebetins are identical to the N-terminal segments of the longer ones. They inhibit platelet aggregation induced by various agonists (e.g. thrombin, PAF-acether or collagen). The shortest lebetin (11-mer) shows potent inhibition of rabbit (IC(50) = 7 nM) and human (IC(50) = 5 nM) platelets. They prevent collagen-induced thrombocytopenia in rats. N- and C-terminal-truncated synthetic L1gamma (sL1gamma; 11-mer) is less active in inhibiting platelet aggregation than the native peptide. Results from Ala scan studies of the sL1gamma peptide indicated that replacement of the residues (P3, G7, P8, P9 or N10) resulted in a remarkable drop in the activity, whereas replacement of residues K2, P4 or K6 by Ala resulted in enhancement of the antiplatelet activity by at least 10-fold. To examine the activity of multimeric L1gamma, several multimeric peptides were synthesized using the multiple-antigen peptide system assembled on a branched lysine core and their antiplatelet activity was evaluated in vitro. The largest multimeric peptides showed a 1,000-fold increase in antiplatelet activity.


Subject(s)
Platelet Aggregation Inhibitors/pharmacology , Viper Venoms/pharmacology , Animals , Blood Platelets/drug effects , Humans , Platelet Aggregation Inhibitors/chemistry , Platelet Aggregation Inhibitors/isolation & purification , Structure-Activity Relationship , Thrombocytopenia/drug therapy , Viper Venoms/chemistry , Viper Venoms/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...