Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(13)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37446838

ABSTRACT

The fire reaction of various types of flammable lightweight materials is investigated using a cone calorimeter. The influences of parameters such as sample density, sample mass, effective heat of combustion and heat flux on the mass loss after exposition are discussed. Interpretations of the hemp fibers' tests results lead us to propose a phenomenological model able to calculate the peak of heat release rate (pHRR) of such thermally thin materials, with or without flame retardant. A database gathering the whole results of tests performed on a large set of materials including fibers, bio-resources panels, bio-based concretes and fabrics is used to validate the proposed model. Interestingly, the model is found to be relevant also for denser wood specimens. The model is based on the distinction of the contributions of the exposed top layer and the deeper layer to the combustion. Indeed, in such materials, the heat conduction is limited (either by the intrinsic properties of the material or by the formation of an insulating char) and therefore the pHRR only depends on a limited volume of materials directly absorbing the heat flux from the radiant cone. Accuracy and limitations of the model are discussed.


Subject(s)
Fires , Flame Retardants , Databases, Factual , Hot Temperature , Textiles
2.
Materials (Basel) ; 15(5)2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35269005

ABSTRACT

In the present work, the processability and fire behavior of parts made by the laser sintering (LS) of polyamide 12/rubber powder blends is studied. In order to evaluate some of the interactions that could take place during LS, three acrylonitrile butadiene rubbers (NBRs) were used, which included two that had different acrylonitrile (AN) contents, and one that had carboxylated rubber. The results show that the flowability of the powders is strongly dependent on the rubber used. For the carboxylated rubber, a good flowability of the blend was observed, whereas the use of rubbers with different AN contents led to significant changes in the powder flowability, with a heterogeneous powder bed, and differences in the porosity as a function of the AN content. Furthermore, the addition of rubbers to polyamide 12 (PA12) entails an increase in the sintering window and, in particular, a change in the melting temperature of PA12 is noticed. Even though some changes in the crystallization and melting temperatures are observed, formulations containing 10 and 20 wt.% of rubbers could be processed using the same process parameters as PA12. Furthermore, the formulations containing carboxylated rubber show improved fire behavior, which is measured by a cone calorimeter, with reductions of about 45 and 65% in the peak of the heat release rate, compared to the PA12. Moreover, almost all of the samples evaluated in this study are classed as "Good" by the Flame Retardancy Index. This result can be partially explained by the formation of an amide linkage between the polyamide and NBR during processing, which could result in increases in the melt viscosities of these samples.

3.
Materials (Basel) ; 15(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35160709

ABSTRACT

For the purpose of fabricating electrically conductive composites via the fused filament fabrication (FFF) technique whose properties were compared with injection-moulded properties, poly(lactic acid) (PLA) and polycaprolactone (PCL) were mixed with different contents of graphene nanoplatelets (GNP). The wettability, morphological, rheological, thermal, mechanical, and electrical properties of the 3D-printed samples were investigated. The microstructural images showed the selective localization of the GNPs in the PCL nodules that are dispersed in the PLA phase. The electrical resistivity results using the four-probes method revealed that the injection-moulded samples are insulators, whereas the 3D-printed samples featuring the same graphene content are semiconductors. Varying the printing raster angles also exerted an influence on the electrical conductivity results. The electrical percolation threshold was found to be lower than 15 wt.%, whereas the rheological percolation threshold was found to be lower than 10 wt.%. Furthermore, the 20 wt.% and 25 wt.% GNP composites were able to connect an electrical circuit. An increase in the Young's modulus was shown with the percentage of graphene. As a result, this work exhibited the potential of the FFF technique to fabricate biodegradable electrically conductive PLA-PCL-GNP composites that can be applicable in the electronic domain.

SELECTION OF CITATIONS
SEARCH DETAIL
...