Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Oxid Med Cell Longev ; 2023: 9136217, 2023.
Article in English | MEDLINE | ID: mdl-37215365

ABSTRACT

Moringa oleifera (Moringaceae) is a medicinal plant rich in biologically active compounds. The aim of the present study was to screen M. oleifera methanolic leaf (L) extract, seed (S) extract, and a combined leaf/seed extract (2L : 1S ratio) for antidiabetic and antioxidant activities in mice following administration at a dose level of 500 mg/kg of body weight/day. Diabetes was induced by alloxan administration. Mice were treated with the extracts for 1 and 3 months and compared with the appropriate control. At the end of the study period, the mice were euthanized and pancreas, liver, kidney, and blood samples were collected for the analysis of biochemical parameters and histopathology. The oral administration of the combined L/S extract significantly reduced fasting blood glucose to normal levels compared with L or S extracts individually; moreover, a significant decrease in cholesterol, triglycerides, creatinine, liver enzymes, and oxidant markers was observed, with a concomitant increase in antioxidant biomarkers. Thus, the combined extract has stronger antihyperlipidemic and antioxidant properties than the individual extracts. The histopathological results also support the biochemical parameters, showing recovery of the pancreas, liver, and kidney tissue. The effects of the combined L/S extracts persisted throughout the study period tested. To the best of our knowledge, this is the first study to report on the antidiabetic, antioxidant, and antihyperlipidemic effects of a combined L/S extract of M. oleifera in an alloxan-induced diabetic model in mice. Our results suggest the potential for developing a natural potent antidiabetic drug from M. oleifera; however, clinical studies are required.


Subject(s)
Diabetes Mellitus, Experimental , Moringa oleifera , Mice , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Antioxidants/chemistry , Moringa oleifera/chemistry , Alloxan/adverse effects , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Diabetes Mellitus, Experimental/pathology , Hypolipidemic Agents/therapeutic use , Plant Leaves/chemistry , Seeds
2.
Open Vet J ; 11(1): 70-79, 2021.
Article in English | MEDLINE | ID: mdl-33898286

ABSTRACT

Background: Male infertility has been on the rise since the past seven decades. Recently, in Libya, bee venom therapy (BVT) has become a popular method among alternative healthcare practitioners for treating male infertility. However, a literature search did not find any published studies that investigated the use of BVT for infertility treatment. Aim: To investigate the effect of bee venom on the male reproductive status through measurements of semen quality parameters and testicular histological changes in adult male mice. Methods: A total of 48 male mice were randomly divided into three experimental groups (which were subdivided into two subgroups with eight mice each) as follows: control, bee venom sting (BVS), and bee venom injection (BVI). The normal control subgroup mice were not subjected to any treatment, while the vehicle control subgroup mice were injected (i.p.) with 200 µl of 0.9% saline solution. In the BVS-treated subgroups, each mouse was stung by one live bee for five times (BVS-5) or seven times (BVS-7) every third day for 2 or 3 weeks. While each mouse in the BVI-treated subgroups received 23 µg/kg in a dose volume of 200 µl BVIs (i.p.) for five times (BVI-5) or seven times (BVI-7) every third day for 15 or 21 days. Results: The findings of this study showed that repeated bee venom treatment by sting or injection to adult male mice resulted in a significant decline in testosterone levels, sperm count, sperm motility, and a very significant increase in the percentage of abnormal sperm morphology; also, there were harmful testicular histological changes in the structural organization of seminiferous tubules and degenerative changes in the germinal epithelium compared to control group. Conclusion: The results of this study provide evidence for the low semen quality and adverse testicular histological changes in male mice treated with bee venom. Hence, there is a desperate need for educating alternative healthcare practitioners and infertile couples about the harmful effects of BVT on reproductive status.


Subject(s)
Bee Venoms/administration & dosage , Fertility Agents, Male/administration & dosage , Mice/physiology , Semen Analysis , Testis/drug effects , Animals , Bee Venoms/adverse effects , Bee Venoms/pharmacology , Fertility Agents, Male/adverse effects , Fertility Agents, Male/pharmacology , Injections, Intraperitoneal/statistics & numerical data , Insect Bites and Stings/complications , Male , Random Allocation , Testis/anatomy & histology , Testis/physiology
3.
Open Vet J ; 7(3): 244-253, 2017.
Article in English | MEDLINE | ID: mdl-28884077

ABSTRACT

Environmental toxicants such as chemicals, heavy metals, and pesticides have been shown to promote transgenerational inheritance of abnormal phenotypes and/or diseases to multiple subsequent generations following parental and/or ancestral exposures. This study was designed to examine the potential transgenerational action of the environmental toxicant trichloroethane (TCE) on transmission of liver abnormality, and to elucidate the molecular etiology of hepatocyte cell damage. A total of thirty two healthy immature female albino mice were randomly divided into three equal groups as follows: a sham group, which did not receive any treatment; a vehicle group, which received corn oil alone, and TCE treated group (3 weeks, 100 µg/kg i.p., every 4th day). The F0 and F1 generation control and TCE populations were sacrificed at the age of four months, and various abnormalities histpathologically investigated. Cell death and oxidative stress indices were also measured. The present study provides experimental evidence for the inheritance of environmentally induced liver abnormalities in mice. The results of this study show that exposure to the TCE promoted adult onset liver abnormalities in F0 female mice as well as unexposed F1 generation offspring. It is the first study to report a transgenerational liver abnormalities in the F1 generation mice through maternal line prior to gestation. This finding was based on careful evaluation of liver histopathological abnormalities, apoptosis of hepatocytes, and measurements of oxidative stress biomarkers (lipid peroxidation, protein carbonylation, and nitric oxide) in control and TCE populations. There was an increase in liver histopathological abnormalities, cell death, and oxidative lipid damage in F0 and F1 hepatic tissues of TCE treated group. In conclusion, this study showed that the biological and health impacts of environmental toxicant TCE do not end in maternal adults, but are passed on to offspring generations. Hence, linking observed liver abnormality in the offspring to environmental exposure of their parental line. This study also illustrated that oxidative stress and apoptosis appear to be a molecular component of the hepatocyte cell injury.

SELECTION OF CITATIONS
SEARCH DETAIL
...