Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 76(11-12): 2941-2948, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29210681

ABSTRACT

Membranes are an important barrier used in recycled water treatment plants for pathogen removal. Understanding performance over operational life is important to inform membrane replacement. In this study, full scale virus challenge testing was conducted on newly commissioned membranes to validate virus log removal values for accreditation. After six years of operation, the membrane integrity was repeated to ensure compliance with the state regulatory health authority and gain an understanding of the asset's condition. Membrane performance was assessed using a combination of complementary tests including membrane autopsy and chemical tolerance testing to assess individual modules and selected membrane fibres, followed by a full scale virus challenge for whole of unit assessment. The results demonstrated that the aged membrane fibres were intact and had not been affected by long-term exposure to chlorine, which provides valuable information for membrane asset replacement strategies.


Subject(s)
Membranes, Artificial , Recycling , Waste Disposal, Fluid/methods , Water Purification/methods , Chlorine , Water Pollutants, Chemical/chemistry
2.
Water Res ; 122: 269-279, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28609730

ABSTRACT

Ultrafiltration is an effective barrier to waterborne pathogens including viruses. Challenge testing is commonly used to test the inherent reliability of such systems. Performance validation seeks to demonstrate the adequate reliability of the treatment system. Appropriate and rigorous data analysis is an essential aspect of validation testing. In this study we used Bayesian analysis to assess the performance of a full-scale ultrafiltration system which was validated and revalidated after five years of operation. A hierarchical Bayesian model was used to analyse a number of similar ultrafiltration membrane skids working in parallel during the two validation periods. This approach enhanced our ability to obtain accurate estimations of performance variability, especially when the sample size of some system skids was limited. This methodology enabled the quantitative estimation of uncertainty in the performance parameters and generation of predictive distributions incorporating those uncertainties. The results indicated that there was a decrease in the mean skid performance after five years of operation of approximately 1 log reduction value (LRV). Interestingly, variability in the LRV also reduced, with standard deviations from the revalidation data being decreased by a mean 0.37 LRV compared with the original validation data. The model was also useful in comparing the operating performance of the various parallel skids within the same year. Evidence of differences was obtained in 2015 for one of the membrane skids. A hierarchical Bayesian analysis of validation data provides robust estimations of performance and the incorporation of probabilistic analysis which is increasingly important for comprehensive quantitative risk assessment purposes.


Subject(s)
Ultrafiltration , Viruses , Water Purification , Bayes Theorem , Humans , Reproducibility of Results
3.
J Environ Qual ; 39(6): 2029-39, 2010.
Article in English | MEDLINE | ID: mdl-21284300

ABSTRACT

The objective of the Parafield Aquifer Storage Transfer and Recovery research project in South Australia is to determine whether stormwater from an urban catchment that is treated in a constructed wetland and stored in an initially brackish aquifer before recovery can meet potable water standards. The water produced by the stormwater harvesting system, which included a constructed wetland, was found to be near potable quality. Parameters exceeding the drinking water guidelines before recharge included small numbers of fecal indicator bacteria and elevated iron concentrations and associated color. This is the first reported study of a managed aquifer recharge (MAR) scheme to be assessed following the Australian guidelines for MAR. A comprehensive staged approach to assess the risks to human health and the environment of this project has been undertaken, with 12 hazards being assessed. A quantitative microbial risk assessment undertaken on the water recovered from the aquifer indicated that the residual risks posed by the pathogenic hazards were acceptable if further supplementary treatment was included. Residual risks from organic chemicals were also assessed to be low based on an intensive monitoring program. Elevated iron concentrations in the recovered water exceeded the potable water guidelines. Iron concentrations increased after underground storage but would be acceptable after postrecovery aeration treatment. Arsenic concentrations in the recovered water continuously met the guideline concentrations acceptable for potable water supplies. However, the elevated concentration of arsenic in native groundwater and its presence in aquifer minerals suggest that the continuing acceptable residual risk from arsenic requires further evaluation.


Subject(s)
Water Supply/analysis , Water Supply/standards , Australia , Conservation of Natural Resources , Environmental Monitoring , Hydrogen-Ion Concentration , Rain , Risk Factors , Salinity , Time Factors , Water Microbiology , Water Pollutants, Chemical/chemistry
4.
Environ Sci Technol ; 39(22): 8614-21, 2005 Nov 15.
Article in English | MEDLINE | ID: mdl-16323754

ABSTRACT

This study investigated the relative behavior of pathogens, fecal indicator organisms, and particles of varying size during transport through a reservoir following a storm event inflow in Myponga Reservoir, South Australia. During the inflow, samples were collected from the river and at various locations within the reservoir to determine the fate and transport of microroganisms as they progressed through the water body. Microbiological analysis included the indicator organisms Escherichia coli, enterococci, Clostridium perfringens, aerobic spores, and somatic coliphages, the protozoan pathogens Cryptosporidium spp. and Giardia spp., and the potential physical surrogates of pathogen contamination including particle size and turbidity. Of the microbial indicator groups, C. perfringens spores were the most highly correlated with Cryptosporidium spp. concentrations (Spearman Rho = 0.58), closely followed by enterococci (Spearman Rho = 0.57). Cryptosporidium spp. oocysts were predominantly associated with small sized particles (range of 14.3-27.7 microm). All of the microbial indicator groups tested were associated with larger sized particle ranges (> 63.3 microm) except C. perfringens spores which were associated with particles in the size range of 45.5-63.3 microm. Although indicators may rank correlate with Cryptosporidium spp., the variation in settling rates of different microorganisms has significant implications for the use of surrogates to estimate pathogen attenuation within reservoirs. For example, concentrations of Cryptosporidium spp. oocysts were reduced by a factor of 3 on reaching the dam wall, whereas enterococci were reduced by a factor of 10.


Subject(s)
Environmental Monitoring/methods , Fresh Water/analysis , Indicators and Reagents/analysis , Water Microbiology , Water Pollution/analysis , Animals , Australia , Clostridium perfringens/isolation & purification , Cryptosporidium/isolation & purification , Disasters , Enterococcus/isolation & purification , Escherichia coli/isolation & purification , Fresh Water/microbiology , Fresh Water/parasitology , Giardia/isolation & purification , Risk Assessment
5.
Aquat Toxicol ; 59(3-4): 209-23, 2002 Sep 24.
Article in English | MEDLINE | ID: mdl-12127738

ABSTRACT

This study investigated the potential for using algal esterase activity of Microcystis aeruginosa and Selenastrum capricornutum as a rapid measure of the biological effects of acid mine drainage (AMD) in a South Australian stream (Australia) also affected by sewage pollution and dry-land salinity. Algal bioassays were based on the non-fluorescent substrate, fluorescein diacetate (FDA) which is metabolised by esterases to the fluorescent product, fluorescein. Esterase activity was interpreted as the mean rate of conversion of FDA to fluorescein and expressed as a percentage of the rate achieved by control algae (%FDAC). Flow cytometry was used to measure the fluorescence of individual algal cells, enabling differentiation of three esterase activity states (low=S(1), normal and stimulated) and calculation of the percentage of algal cells in each activity state relative to that found for control algae (e.g. %S(1)). Algal esterase activity responded rapidly to AMD-affected water but also to increased conductivity (associated with dry-land salinity) and nutrient concentrations (associated with sewage). Exposure to AMD-affected water for 1 h reduced %FDAC by 30-70%, and increased %S(1) by 60-90%, a depression of esterase activity that was maintained over 24 h. A similar depression of esterase activity occurred in both algae exposed to comparatively high-conductivity water (ca. 20 mS cm(-1)) for 1 h but the algae recovered from this 'shock' within 24 h. The %FDAC of S. capricornutum increased from 66 to 158% of control values after a 24 h exposure to nutrient-enriched water sampled downstream from a sewage treatment plant, despite the fact that the alga was grown in nutrient-sufficient culture. The combination of cyanobacterial (M. aeruginosa) and green (S. capricornutum) algal cultures with exposure times of 1 and 24 h was successful in distinguishing between the three types of pollution. Correlation of esterase activity measures with water quality parameters indicated that the clearest and least equivocal biological measure of AMD for the study area was the %S(1) for M. aeruginosa after a 24 h exposure. The use of the flow cytometer to define a low esterase activity state was therefore successful in clarifying the response to AMD-affected water. The study demonstrates the successful application of algal esterase activity bioassays, in combination with flow cytometry, to rapidly assess the toxicity of AMD-affected waters and to differentiate this response from the effects of other pollutants (increased nutrients and conductivity).


Subject(s)
Environmental Monitoring/methods , Esterases/metabolism , Eukaryota/enzymology , Fluoresceins/pharmacokinetics , Mining , Animals , Biological Assay/methods , Cyanobacteria/metabolism , Flow Cytometry , Fresh Water , Waste Disposal, Fluid , Water Pollutants, Chemical/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...