Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
FEBS Lett ; 596(7): 910-923, 2022 04.
Article in English | MEDLINE | ID: mdl-35060124

ABSTRACT

Superantigens (SAgs) are bacterial enterotoxins produced by Staphylococcus aureus. Staphylococcal enterotoxin type A (SEA), a staphylococcal superantigen, has been shown to bind to the cytokine signalling receptor glycoprotein 130 (gp130). The structural details, as well as the exact physiological role of this interaction, remain unclear. Here, we describe the structural details of the SEA-gp130 complex by combining crosslinking mass spectrometry and computational modelling. Interestingly, SEA is not able to bind gp130-homologues from rat and mouse. Our data suggest that SEA may interact with human gp130 in a different manner than other known gp130-ligands. Moreover, the fact that SEA does not bind mouse or rat gp130 suggests that SAgs have additional mechanisms of action in humans.


Subject(s)
Enterotoxins , Receptors, Cytokine , Animals , Cytokine Receptor gp130 , Enterotoxins/metabolism , Glycoproteins , Humans , Mice , Rats , Superantigens
2.
J Leukoc Biol ; 111(3): 597-609, 2022 03.
Article in English | MEDLINE | ID: mdl-34114693

ABSTRACT

Staphylococcal enterotoxins (SE) pose a great threat to human health due to their ability to bypass antigen presentation and activate large amounts of conventional T cells resulting in a cytokine storm potentially leading to toxic shock syndrome. Unconventional T- and NK cells are also activated by SE but the mechanisms remain poorly understood. In this study, the authors aimed to explore the underlying mechanism behind SE-mediated activation of MAIT-, γδ T-, and NK cells in vitro. CBMC or PBMC were stimulated with the toxins SEA, SEH, and TSST-1, and cytokine and cytotoxic responses were analyzed with ELISA and flow cytometry. All toxins induced a broad range of cytokines, perforin and granzyme B, although SEH was not as potent as SEA and TSST-1. SE-induced IFN-γ expression in MAIT-, γδ T-, and NK cells was clearly reduced by neutralization of IL-12, while cytotoxic compounds were not affected at all. Kinetic assays showed that unconventional T cell and NK cell-responses are secondary to the response in conventional T cells. Furthermore, co-cultures of isolated cell populations revealed that the ability of SEA to activate γδ T- and NK cells was fully dependent on the presence of both monocytes and αß T cells. Lastly, it was found that SE provoked a reduced and delayed cytokine response in infants, particularly within the unconventional T and NK cell populations. This study provides novel insights regarding the activation of unconventional T- and NK cells by SE, which contribute to understanding the vulnerability of young children towards Staphylococcus aureus infections.


Subject(s)
Monocytes , T-Lymphocytes , Child , Child, Preschool , Cytokines , Enterotoxins/pharmacology , Humans , Killer Cells, Natural , Leukocytes, Mononuclear , Staphylococcus aureus , Superantigens/pharmacology
3.
PLoS One ; 12(4): e0175989, 2017.
Article in English | MEDLINE | ID: mdl-28403221

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0172445.].

4.
PLoS One ; 12(2): e0172445, 2017.
Article in English | MEDLINE | ID: mdl-28207867

ABSTRACT

The staphylococcal enterotoxins (SEs) are secreted by the bacteria Staphylococcus aureus and are the most common causative agent in staphylococcal food poisoning. The staphylococcal enterotoxin A (SEA) has been associated with large staphylococcal food poisoning outbreaks, but newer identified SEs, like staphylococcal enterotoxin H (SEH) has recently been shown to be present at similar levels as SEA in food poisoning outbreaks. Thus, we set out to investigate the thermo-stability of the three-dimensional structures of SEA, SEH and staphylococcal enterotoxin E (SEE), since heat inactivation is a common method to inactivate toxins during food processing. Interestingly, the investigated toxins behaved distinctly different upon heating. SEA and SEE were more stable at slightly acidic pH values, while SEH adopted an extremely stable structure at neutral pH, with almost no effects on secondary structural elements upon heating to 95°C, and with reversible formation of tertiary structure upon subsequent cooling to room temperature. Taken together, the data suggests that the family of staphylococcal enterotoxins have different ability to withstand heat, and thus the exact profile of heat inactivation for all SEs causing food poisoning needs to be considered to improve food safety.


Subject(s)
Enterotoxins/genetics , Food Contamination/analysis , Staphylococcal Food Poisoning/epidemiology , Staphylococcal Food Poisoning/microbiology , Staphylococcus aureus/genetics , DNA, Bacterial/genetics , Humans , Polymerase Chain Reaction , Staphylococcus aureus/isolation & purification , Sweden/epidemiology , Temperature
5.
Sci Rep ; 6: 25796, 2016 05 16.
Article in English | MEDLINE | ID: mdl-27180909

ABSTRACT

Superantigens are toxins produced by Staphylococcus aureus, called staphylococcal enterotoxins (abbreviated SEA to SEU). They can cross-link the T cell receptor (TCR) and major histocompatibility complex class II, triggering a massive T cell activation and hence disease. Due to high stability and toxicity, superantigens are potential agents of bioterrorism. Hence, antagonists may not only be useful in the treatment of disease but also serve as countermeasures to biological warfare. Of particular interest are inhibitors against SEA and SEB. SEA is the main cause of food poisoning, while SEB is a common toxin manufactured as a biological weapon. Here, we present the crystal structures of SEA in complex with TCR and SEE in complex with the same TCR, complemented with computational alanine-scanning mutagenesis of SEA, SEB, SEC3, SEE, and SEH. We have identified two common areas that contribute to the general TCR binding for these superantigens. This paves the way for design of single antagonists directed towards multiple toxins.


Subject(s)
Enterotoxins/chemistry , Enterotoxins/metabolism , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/metabolism , Amino Acid Motifs , Amino Acid Sequence , Crystallography, X-Ray , Hydrogen Bonding , Models, Molecular , Mutagenesis/genetics , Protein Structure, Secondary , Superantigens/chemistry , Superantigens/metabolism
6.
PLoS One ; 10(7): e0131988, 2015.
Article in English | MEDLINE | ID: mdl-26147596

ABSTRACT

T cells are crucial players in cell-mediated immunity. The specificity of their receptor, the T cell receptor (TCR), is central for the immune system to distinguish foreign from host antigens. Superantigens are bacterial toxins capable of inducing a toxic immune response by cross-linking the TCR and the major histocompatibility complex (MHC) class II and circumventing the antigen specificity. Here, we present the structure of staphylococcal enterotoxin E (SEE) in complex with a human T cell receptor, as well as the unligated T cell receptor structure. There are clear structural changes in the TCR loops upon superantigen binding. In particular, the HV4 loop moves to circumvent steric clashes upon complex formation. In addition, a predicted ternary model of SEE in complex with both TCR and MHC class II displays intermolecular contacts between the TCR α-chain and the MHC, suggesting that the TCR α-chain is of importance for complex formation.


Subject(s)
Enterotoxins/metabolism , Receptors, Antigen, T-Cell/metabolism , Superantigens/metabolism , Crystallography, X-Ray , Humans , Immunity, Cellular/immunology , Protein Conformation , Staphylococcus aureus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...