Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 127(11): 117701, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34558942

ABSTRACT

We describe a tunneling spectroscopy technique in a double bilayer graphene heterostructure where momentum-conserving tunneling between different energy bands serves as an energy filter for the tunneling carriers, and allows a measurement of the quasiparticle state broadening at well-defined energies. The broadening increases linearly with the excited state energy with respect to the Fermi level and is weakly dependent on temperature. In-plane magnetotunneling reveals a high degree of rotational alignment between the graphene bilayers, and an absence of momentum randomizing processes.

2.
Proc Natl Acad Sci U S A ; 117(22): 11878-11886, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32424094

ABSTRACT

Spin Hall effect (SHE), a mechanism by which materials convert a charge current into a spin current, invokes interesting physics and promises to empower transformative, energy-efficient memory technology. However, fundamental questions remain about the essential factors that determine SHE. Here, we solve this open problem, presenting a comprehensive theory of five rational design principles for achieving giant intrinsic SHE in transition metal oxides. Arising from our key insight regarding the inherently geometric nature of SHE, we demonstrate that two of these design principles are weak crystal fields and the presence of structural distortions. Moreover, we discover that antiperovskites are a highly promising class of materials for achieving giant SHE, reaching SHE values an order of magnitude larger than that reported for any oxide. Additionally, we derive three other design principles for enhancing SHE. Our findings bring deeper insight into the physics driving SHE and could help enhance and externally control SHE values.

3.
Nano Lett ; 18(9): 5967-5973, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30105907

ABSTRACT

We investigate interlayer tunneling in heterostructures consisting of two tungsten diselenide (WSe2) monolayers with controlled rotational alignment, and separated by hexagonal boron nitride. In samples where the two WSe2 monolayers are rotationally aligned we observe resonant tunneling, manifested by a large conductance and negative differential resistance in the vicinity of zero interlayer bias, which stem from energy- and momentum-conserving tunneling. Because the spin-orbit coupling leads to coupled spin-valley degrees of freedom, the twist between the two WSe2 monolayers allows us to probe the conservation of spin-valley degree of freedom in tunneling. In heterostructures where the two WSe2 monolayers have a 180° relative twist, such that the Brillouin zone of one layer is aligned with the time-reversed Brillouin zone of the opposite layer, the resonant tunneling between the layers is suppressed. These findings provide evidence that, in addition to momentum, the spin-valley degree of freedom is also conserved in vertical transport.

4.
Phys Rev Lett ; 120(17): 177702, 2018 Apr 27.
Article in English | MEDLINE | ID: mdl-29756812

ABSTRACT

We report the experimental observation of strongly enhanced tunneling between graphene bilayers through a WSe_{2} barrier when the graphene bilayers are populated with carriers of opposite polarity and equal density. The enhanced tunneling increases sharply in strength with decreasing temperature, and the tunneling current exhibits a vertical onset as a function of interlayer voltage at a temperature of 1.5 K. The strongly enhanced tunneling at overall neutrality departs markedly from single-particle model calculations that otherwise match the measured tunneling current-voltage characteristics well, and suggests the emergence of a many-body state with condensed interbilayer excitons when electrons and holes of equal densities populate the two layers.

5.
ACS Appl Mater Interfaces ; 10(1): 1125-1131, 2018 Jan 10.
Article in English | MEDLINE | ID: mdl-29226670

ABSTRACT

Understanding defect effect on carrier dynamics is essential for both fundamental physics and potential applications of transition metal dichalcogenides (TMDs). Here, the phenomenon of oxygen impurities trapping photoexcited carriers has been studied with ultrafast pump-probe spectroscopy. Oxygen impurities are intentionally created in exfoliated multilayer MoSe2 with Ar+ plasma irradiation and air exposure. After plasma treatment, the signal of transient absorption first increases and then decreases, which is a signature of defect-capturing carriers. With larger density of oxygen defects, the trapping effect becomes more prominent. The trapping defect densities are estimated from the transient absorption signal, and its increasing trend in the longer-irradiated sample agrees with the results from X-ray photoelectron spectroscopy. First-principle calculations with density functional theory reveal that oxygen atoms occupying Mo vacancies create mid-gap defect states, which are responsible for carrier trapping. Our findings shed light on the important role of oxygen defects as carrier trappers in TMDs, and facilitate defect engineering in relevant materials and device applications.

6.
Nano Lett ; 17(6): 3919-3925, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28557462

ABSTRACT

We demonstrate gate-tunable resonant tunneling and negative differential resistance between two rotationally aligned bilayer graphene sheets separated by bilayer WSe2. We observe large interlayer current densities of 2 and 2.5 µA/µm2 and peak-to-valley ratios approaching 4 and 6 at room temperature and 1.5 K, respectively, values that are comparable to epitaxially grown resonant tunneling heterostructures. An excellent agreement between theoretical calculations using a Lorentzian spectral function for the two-dimensional (2D) quasiparticle states, and the experimental data indicates that the interlayer current stems primarily from energy and in-plane momentum conserving 2D-2D tunneling, with minimal contributions from inelastic or non-momentum-conserving tunneling. We demonstrate narrow tunneling resonances with intrinsic half-widths of 4 and 6 meV at 1.5 and 300 K, respectively.

7.
Nano Lett ; 16(8): 4975-81, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27416362

ABSTRACT

Interlayer tunnel field-effect transistors based on graphene and hexagonal boron nitride (hBN) have recently attracted much interest for their potential as beyond-CMOS devices. Using a recently developed method for fabricating rotationally aligned two-dimensional heterostructures, we show experimental results for devices with varying thicknesses and stacking order of the graphene electrode layers and also model the current-voltage behavior. We show that an increase in the graphene layer thickness results in narrower resonance. However, due to a simultaneous increase in the number of sub-bands and decrease of sub-band separation with an increase in thickness, the negative differential resistance peaks becomes less prominent and do not appear for certain conditions at room temperature. Also, we show that due to the unique band structure of odd number of layer Bernal-stacked graphene, the number of closely spaced resonance conditions increase, causing interference between neighboring resonance peaks. Although this can be avoided with even number of layer graphene, we find that in this case the bandgap opening present at high biases tend to broaden the resonance peaks.

8.
Nano Lett ; 15(7): 4329-36, 2015 Jul 08.
Article in English | MEDLINE | ID: mdl-26091062

ABSTRACT

To reduce Schottky-barrier-induced contact and access resistance, and the impact of charged impurity and phonon scattering on mobility in devices based on 2D transition metal dichalcogenides (TMDs), considerable effort has been put into exploring various doping techniques and dielectric engineering using high-κ oxides, respectively. The goal of this work is to demonstrate a high-κ dielectric that serves as an effective n-type charge transfer dopant on monolayer (ML) molybdenum disulfide (MoS2). Utilizing amorphous titanium suboxide (ATO) as the "high-κ dopant", we achieved a contact resistance of ∼180 Ω·µm that is the lowest reported value for ML MoS2. An ON current as high as 240 µA/µm and field effect mobility as high as 83 cm(2)/V-s were realized using this doping technique. Moreover, intrinsic mobility as high as 102 cm(2)/V-s at 300 K and 501 cm(2)/V-s at 77 K were achieved after ATO encapsulation that are among the highest mobility values reported on ML MoS2. We also analyzed the doping effect of ATO films on ML MoS2, a phenomenon that is absent when stoichiometric TiO2 is used, using ab initio density functional theory (DFT) calculations that shows excellent agreement with our experimental findings. On the basis of the interfacial-oxygen-vacancy mediated doping as seen in the case of high-κ ATO-ML MoS2, we propose a mechanism for the mobility enhancement effect observed in TMD-based devices after encapsulation in a high-κ dielectric environment.

9.
Nano Lett ; 15(1): 428-33, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25436861

ABSTRACT

We demonstrate gate-tunable resonant tunneling and negative differential resistance in the interlayer current-voltage characteristics of rotationally aligned double bilayer graphene heterostructures separated by hexagonal boron nitride (hBN) dielectric. An analysis of the heterostructure band alignment using individual layer densities, along with experimentally determined layer chemical potentials indicates that the resonance occurs when the energy bands of the two bilayer graphene are aligned. We discuss the tunneling resistance dependence on the interlayer hBN thickness, as well as the resonance width dependence on mobility and rotational alignment.

10.
J Phys Condens Matter ; 23(50): 505503, 2011 Dec 21.
Article in English | MEDLINE | ID: mdl-22119858

ABSTRACT

We study the effects of insulating oxides in their crystalline forms on the energy band structure of monolayer and bilayer graphene using a first principles density functional theory based electronic structure method and a local density approximation. We consider the dielectric oxides SiO(2) (α-quartz) and Al(2)O(3) (alumina or α-sapphire), each with two surface terminations. Our study suggests that atomic relaxations and resulting equilibrium separations play a critical role in perturbing the linear band structure of graphene in contrast to the less critical role played by dangling bonds that result from cleaving the crystal in a particular direction. For Si-terminated quartz a Dirac cone is retained while it is restored on adding a second graphene layer for O-terminated quartz. Alumina needs more than two graphene layers to preserve the Dirac cone. Our results are, at best, semi-quantitative for the common amorphous forms of the oxides considered.

SELECTION OF CITATIONS
SEARCH DETAIL
...