Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 3709, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35794108

ABSTRACT

Single pass cell surface receptors regulate cellular processes by transmitting ligand-encoded signals across the plasma membrane via changes to their extracellular and intracellular conformations. This transmembrane signaling is generally initiated by ligand binding to the receptors in their monomeric form. While subsequent receptor-receptor interactions are established as key aspects of transmembrane signaling, the contribution of monomeric receptors has been challenging to isolate due to the complexity and ligand-dependence of these interactions. By combining membrane nanodiscs produced with cell-free expression, single-molecule Förster Resonance Energy Transfer measurements, and molecular dynamics simulations, we report that ligand binding induces intracellular conformational changes within monomeric, full-length epidermal growth factor receptor (EGFR). Our observations establish the existence of extracellular/intracellular conformational coupling within a single receptor molecule. We implicate a series of electrostatic interactions in the conformational coupling and find the coupling is inhibited by targeted therapeutics and mutations that also inhibit phosphorylation in cells. Collectively, these results introduce a facile mechanism to link the extracellular and intracellular regions through the single transmembrane helix of monomeric EGFR, and raise the possibility that intramolecular transmembrane conformational changes upon ligand binding are common to single-pass membrane proteins.


Subject(s)
ErbB Receptors , Cell Membrane/metabolism , ErbB Receptors/metabolism , Ligands , Protein Binding , Protein Conformation
2.
J Phys Chem Lett ; 11(23): 10037-10044, 2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33179922

ABSTRACT

The epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, regulates basic cellular functions and is a major target for anticancer therapeutics. The carboxyl-terminus domain is a disordered region of EGFR that contains the tyrosine residues, which undergo autophosphorylation followed by docking of signaling proteins. Local phosphorylation-dependent secondary structure has been identified and is thought to be associated with the signaling cascade. Deciphering and distinguishing the overall conformations, however, have been challenging because of the disordered nature of the carboxyl-terminus domain and resultant lack of well-defined three-dimensional structure for most of the domain. We investigated the overall conformational states of the isolated EGFR carboxyl-terminus domain using single-molecule Förster resonance energy transfer and coarse-grained simulations. Our results suggest that electrostatic interactions between charged residues emerge within the disordered domain upon phosphorylation, producing a looplike conformation. This conformation may enable binding of downstream signaling proteins and potentially reflect a general mechanism in which electrostatics transiently generate functional architectures in disordered regions of a well-folded protein.


Subject(s)
ErbB Receptors/chemistry , ErbB Receptors/metabolism , Fluorescence Resonance Energy Transfer , Humans , Molecular Dynamics Simulation , Phosphorylation , Protein Conformation , Static Electricity
3.
J Phys Chem Lett ; 9(1): 110-119, 2018 Jan 04.
Article in English | MEDLINE | ID: mdl-29240442

ABSTRACT

The plasma membrane of living cells is compartmentalized at multiple spatial scales ranging from the nano- to the mesoscale. This nonrandom organization is crucial for a large number of cellular functions. At the nanoscale, cell membranes organize into dynamic nanoassemblies enriched by cholesterol, sphingolipids, and certain types of proteins. Investigating these nanoassemblies known as lipid rafts is of paramount interest in fundamental cell biology. However, this goal requires simultaneous nanometer spatial precision and microsecond temporal resolution, which is beyond the reach of common microscopes. Optical antennas based on metallic nanostructures efficiently enhance and confine light into nanometer dimensions, breaching the diffraction limit of light. In this Perspective, we discuss recent progress combining optical antennas with fluorescence correlation spectroscopy (FCS) to monitor microsecond dynamics at nanoscale spatial dimensions. These new developments offer numerous opportunities to investigate lipid and protein dynamics in both mimetic and native biological membranes.


Subject(s)
Cell Membrane/chemistry , Membrane Microdomains/chemistry , Cell Membrane/physiology , Diffusion , Lipids/chemistry , Membrane Microdomains/physiology , Nanostructures , Spectrometry, Fluorescence
4.
Nano Lett ; 17(10): 6295-6302, 2017 10 11.
Article in English | MEDLINE | ID: mdl-28926278

ABSTRACT

Optical nanoantennas can efficiently confine light into nanoscopic hotspots, enabling single-molecule detection sensitivity at biological relevant conditions. This innovative approach to breach the diffraction limit offers a versatile platform to investigate the dynamics of individual biomolecules in living cell membranes and their partitioning into cholesterol-dependent lipid nanodomains. Here, we present optical nanoantenna arrays with accessible surface hotspots to study the characteristic diffusion dynamics of phosphoethanolamine (PE) and sphingomyelin (SM) in the plasma membrane of living cells at the nanoscale. Fluorescence burst analysis and fluorescence correlation spectroscopy performed on nanoantennas of different gap sizes show that, unlike PE, SM is transiently trapped in cholesterol-enriched nanodomains of 10 nm diameter with short characteristic times around 100 µs. The removal of cholesterol led to the free diffusion of SM, consistent with the dispersion of nanodomains. Our results are consistent with the existence of highly transient and fluctuating nanoscale assemblies enriched by cholesterol and sphingolipids in living cell membranes, also known as lipid rafts. Quantitative data on sphingolipids partitioning into lipid rafts is crucial to understand the spatiotemporal heterogeneous organization of transient molecular complexes on the membrane of living cells at the nanoscale. The proposed technique is fully biocompatible and thus provides various opportunities for biophysics and live cell research to reveal details that remain hidden in confocal diffraction-limited measurements.


Subject(s)
Cell Membrane/chemistry , Cholesterol/analysis , Ethanolamines/analysis , Membrane Microdomains/chemistry , Spectrometry, Fluorescence/methods , Sphingomyelins/analysis , Animals , CHO Cells , Cricetulus , Diffusion
5.
ACS Nano ; 11(7): 7241-7250, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28696660

ABSTRACT

Nanoscale membrane assemblies of sphingolipids, cholesterol, and certain proteins, also known as lipid rafts, play a crucial role in facilitating a broad range of important cell functions. Whereas on living cell membranes lipid rafts have been postulated to have nanoscopic dimensions and to be highly transient, the existence of a similar type of dynamic nanodomains in multicomponent lipid bilayers has been questioned. Here, we perform fluorescence correlation spectroscopy on planar plasmonic antenna arrays with different nanogap sizes to assess the dynamic nanoscale organization of mimetic biological membranes. Our approach takes advantage of the highly enhanced and confined excitation light provided by the nanoantennas together with their outstanding planarity to investigate membrane regions as small as 10 nm in size with microsecond time resolution. Our diffusion data are consistent with the coexistence of transient nanoscopic domains in both the liquid-ordered and the liquid-disordered microscopic phases of multicomponent lipid bilayers. These nanodomains have characteristic residence times between 30 and 150 µs and sizes around 10 nm, as inferred from the diffusion data. Thus, although microscale phase separation occurs on mimetic membranes, nanoscopic domains also coexist, suggesting that these transient assemblies might be similar to those occurring in living cells, which in the absence of raft-stabilizing proteins are poised to be short-lived. Importantly, our work underscores the high potential of photonic nanoantennas to interrogate the nanoscale heterogeneity of native biological membranes with ultrahigh spatiotemporal resolution.


Subject(s)
Lipid Bilayers/chemistry , Membrane Microdomains/chemistry , Phase Transition , Cholesterol/chemistry , Diffusion , Models, Molecular , Phosphatidylcholines/chemistry , Spectrometry, Fluorescence/methods
6.
Nano Lett ; 17(3): 1703-1710, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28182429

ABSTRACT

Optical nanoantennas have a great potential for enhancing light-matter interactions at the nanometer scale, yet fabrication accuracy and lack of scalability currently limit ultimate antenna performance and applications. In most designs, the region of maximum field localization and enhancement (i.e., hotspot) is not readily accessible to the sample because it is buried into the nanostructure. Moreover, current large-scale fabrication techniques lack reproducible geometrical control below 20 nm. Here, we describe a new nanofabrication technique that applies planarization, etch back, and template stripping to expose the excitation hotspot at the surface, providing a major improvement over conventional electron beam lithography methods. We present large flat surface arrays of in-plane nanoantennas, featuring gaps as small as 10 nm with sharp edges, excellent reproducibility and full surface accessibility of the hotspot confined region. The novel fabrication approach drastically improves the optical performance of plasmonic nanoantennas to yield giant fluorescence enhancement factors up to 104-105 times, together with nanoscale detection volumes in the 20 zL range. The method is fully scalable and adaptable to a wide range of antenna designs. We foresee broad applications by the use of these in-plane antenna geometries ranging from large-scale ultrasensitive sensor chips to microfluidics and live cell membrane investigations.

7.
Nano Lett ; 16(8): 5143-51, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27399057

ABSTRACT

Plasmonic antennas have a profound impact on nanophotonics as they provide efficient means to manipulate light and enhance light-matter interactions at the nanoscale. However, the large absorption losses found in metals can severely limit the plasmonic applications in the visible spectral range. Here, we demonstrate the effectiveness of an alternative approach using all-dielectric nanoantennas based on silicon dimers to enhance the fluorescence detection of single molecules. The silicon antenna design is optimized to confine the near-field intensity in the 20 nm nanogap and reach a 270-fold fluorescence enhancement in a nanoscale volume of λ(3)/1800 with dielectric materials only. Our conclusions are assessed by combining polarization resolved optical spectroscopy of individual antennas, scanning electron microscopy, numerical simulations, fluorescence lifetime measurements, fluorescence burst analysis, and fluorescence correlation spectroscopy. This work demonstrates that all-silicon nanoantennas are a valid alternative to plasmonic devices for enhanced single molecule fluorescence sensing, with the additional key advantages of reduced nonradiative quenching, negligible heat generation, cost-efficiency, and complementary metal-oxide-semiconductor (CMOS) compatibility.

8.
Sci Rep ; 5: 15852, 2015 Oct 29.
Article in English | MEDLINE | ID: mdl-26511149

ABSTRACT

Diffraction ultimately limits the fluorescence collected from a single molecule, and sets an upper limit to the maximum concentration to isolate a single molecule in the detection volume. To overcome these limitations, we introduce here the use of a double nanohole structure with 25 nm gap, and report enhanced detection of single fluorescent molecules in concentrated solutions exceeding 20 micromolar. The nanometer gap concentrates the light into an apex volume down to 70 zeptoliter (10(-21) L), 7000-fold below the diffraction-limited confocal volume. Using fluorescence correlation spectroscopy and time-correlated photon counting, we measure fluorescence enhancement up to 100-fold, together with local density of optical states (LDOS) enhancement of 30-fold. The distinctive features of double nanoholes combining high local field enhancement, efficient background screening and relative nanofabrication simplicity offer new strategies for real time investigation of biochemical events with single molecule resolution at high concentrations.

9.
Rev Sci Instrum ; 84(9): 093704, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24089833

ABSTRACT

Super-resolution microscopy has tremendously progressed our understanding of cellular biophysics and biochemistry. Specifically, 4pi fluorescence microscopy technique stands out because of its axial super-resolution capability. All types of 4pi-microscopy techniques work well in conjugation with deconvolution techniques to get rid of artifacts due to side-lobes. In this regard, we propose a technique based on spatial filter in a 4pi-type-C confocal setup to get rid of these artifacts. Using a special spatial filter, we have reduced the depth-of-focus. Interference of two similar depth-of-focus beams in a 4π geometry result in substantial reduction of side-lobes. Studies show a reduction of side-lobes by 46% and 76% for single and two photon variant compared to 4pi - type - C confocal system. This is incredible considering the resolving capability of the existing 4pi - type - C confocal microscopy. Moreover, the main lobe is found to be 150 nm for the proposed spatial filtering technique as compared to 690 nm of the state-of-art confocal system. Reconstruction of experimentally obtained 2PE - 4pi data of green fluorescent protein (GFP)-tagged mitocondrial network shows near elimination of artifacts arising out of side-lobes. Proposed technique may find interesting application in fluorescence microscopy, nano-lithography, and cell biology.


Subject(s)
Microscopy, Fluorescence, Multiphoton/instrumentation , Microscopy, Fluorescence, Multiphoton/methods , Models, Theoretical
10.
Microsc Res Tech ; 76(11): 1101-7, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24136899

ABSTRACT

We propose a light sheet based imaging flow cytometry technique for simultaneous counting and imaging of cells on a microfluidic platform. Light sheet covers the entire microfluidic channel and thus omits the necessity of flow focusing and point scanning based technology. Another advantage lies in the orthogonal detection geometry that totally cuts-off the incident light, thereby substantially reducing the background in the detection. Compared to the existing state-of-art techniques the proposed technique shows marked improvement. Using fluorescently-coated Saccharomyces cerevisiae cells we have recorded cell counting with throughput as high as 2,090 cells/min in the low flow rate regime and were able to image the individual cells on-the-go. Overall, the proposed system is cost-effective and simple in channel geometry with the advantage of efficient counting in operational regime of low laminar flow. This technique may advance the emerging field of microfluidic based cytometry for applications in nanomedicine and point of care diagnostics.


Subject(s)
Cytological Techniques/methods , Flow Cytometry/methods , Image Processing, Computer-Assisted/methods , Microfluidics/methods , Microscopy/methods , Colony Count, Microbial/methods , Fluorescent Dyes/metabolism , Saccharomyces cerevisiae/cytology , Staining and Labeling/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...