Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 10(11)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33114194

ABSTRACT

For the first time, herein is reported the use of a magnetic core-shell support for a C-scorpionate metallic complex. The prepared hybrid material, that consists on the C-scorpionate iron(II) complex [FeCl2{κ3-HC(pz)3}] (pz, pyrazolyl) immobilized at magnetic core-shell particles (Fe3O4/TiO2), was tested as catalyst for the oxidation of secondary alcohols using the model substrate 1-phenylethanol. Moreover, the application of alternative energy sources (e.g., ultrasounds, microwaves, mechanical or thermal) for the peroxidative alcohol oxidation using the magnetic heterogenized iron(II) scorpionate led to different/unusual outcomes that are presented and discussed.

2.
Langmuir ; 23(7): 3712-22, 2007 Mar 27.
Article in English | MEDLINE | ID: mdl-17316034

ABSTRACT

Hydroxygallium phthalocyanine (HOGaPc) and cellulose (from a trimethylsilyl derivative) have been used as native elements for the preparation of a novel family of hybrid films. By spin-coating, both components allow the building of films with different configurations on various substrates in a controlled way. The particularities of these hybrid films have been characterized by a range of techniques such as Fourier transform infrared spectroscopy (FTIRS) in attenuated total reflection using multiple internal reflections (ATR/MIR), absorption ultraviolet and visible spectroscopy (UV-vis), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and surface potential measurements using the Kelvin-Zisman vibrating capacitor probe (KP). This enabled determination of the influence of cellulose on the arrangement of HOGaPc and, consequently, control of the relation between the structure and the properties of the films. Finally, gas sensor tests were performed to check the potentialities of these hybrid films. In particular, the synergetic behavior between the film-forming materials allows a fast and sensible change in surface potential after cyclic exposures to ozone (O3, 100 ppb) and nitrogen. Overall, we present the advantages of combining phthalocyanine with cellulose in enhancing the properties of the final product. Introduction of cellulose as a host material opens up a new area of hybrid films.

SELECTION OF CITATIONS
SEARCH DETAIL