Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bone ; 53(2): 497-506, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23337039

ABSTRACT

Root resorption is an adverse outcome of orthodontic tooth movement. However, there have been no available approaches for the protection and repair of root resorption. The aim of this study was to evaluate the effects of low-intensity pulsed ultrasound (LIPUS) on root resorption during experimental tooth movement and the effects of LIPUS in the RANKL/OPG mechanism in osteoblasts and cementoblasts in vitro. Twenty four Wistar strain male rats of 12-week-old were used in this study. The upper first molars were subjected to experimental movement in the mesial direction for 1-3weeks. Through the experimental periods, the right upper first maxillary molar was exposed to LIPUS (LIPUS group) every day for 1, 2 or 3weeks. The nature of root resorption was observed and then quantified by histomorphometric analysis. In the 2weeks period, significantly greater amount of tooth movement was observed in the LIPUS group (p<0.05). In addition, LIPUS group showed less root resorption lacunae and lower number of odontoclasts. In the period of 3weeks, LIPUS group presented significantly shorter length of root resorption lacunae and smaller amount of root resorption area (p<0.01). The number of odontoclasts and osteoclasts was also significantly lower in the LIPUS group (p<0.01 and p<0.05, respectively). However, no significant differences could be found regarding the amount of tooth movement. It is shown that LIPUS exposure significantly reduced the degree of root resorption during tooth movement without interrupting tooth movement. In vitro experiments showed that MC3T3-1 constitutively expressed higher levels of RANKL and RANTES mRNA comparing to OCCM-30. However, OPG mRNA expression was much higher in OCCM-30. LIPUS stimulation significantly increased the mRNA expression of RANKL in MC3T3-E1 at 4 (p<0.01) and 12h (p<0.05), although OPG mRNA expression was not affected by LIPUS. In contrast, the expression of RANKL and OPG mRNAs were both significantly increased by LIPUS in OCCM-30 at 12h (p<0.01). Moreover, LIPUS application suppressed the up-regulation of RANKL mRNA induced by compression force in OCCM-30, but no similar effect could be observed in MC3T3-E1. In conclusion, it is suggested that LIPUS exposure significantly reduces root resorption by the suppression of cementoclastogenesis by altering OPG/RANKL ratio during orthodontic tooth movement without interfering tooth movement. LIPUS may be an effective tool to prevent root resorption during tooth movement and is applicable to clinical use in near future.


Subject(s)
Root Resorption , Sound , Tooth Root/radiation effects , Animals , Dental Cementum/radiation effects , Rats , Rats, Wistar
2.
J Biomech ; 41(5): 1119-23, 2008.
Article in English | MEDLINE | ID: mdl-18242620

ABSTRACT

Little information is available on the direction-dependency of shear behavior in mandibular condylar cartilage. Therefore, we tested the hypothesis that such a dependency of the dynamic shear properties is present in mandibular condylar cartilage. From each of 17 condyles, two cartilage-bone plugs were dissected and tested in a simple shear sandwich configuration under a compressive strain of 10%. Sinusoidal shear strain (frequency range: 0.01-10 Hz) was applied in the medio-lateral or antero-posterior direction with an amplitude of 1.0%, 2.0%, and 3.0%. The magnitudes of the dynamic shear moduli, as calculated from the resulting shear stress, were found to increase with applied frequency and the shear strain amplitude. The values |G*|, G' and G'' for a medio-laterally applied shear were about 20-33% of those in the antero-posterior shear, although the loss tangent (elasticity/viscosity ratio) was almost the same. In conclusion, the present results clearly show the direction-dependent characteristic of the mandibular condylar cartilage in dynamic shear.


Subject(s)
Cartilage/physiology , Mandibular Condyle/physiology , Shear Strength , Animals , Elasticity , Sus scrofa , Tensile Strength/physiology , Viscosity
3.
J Biomed Mater Res A ; 85(1): 127-32, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17688244

ABSTRACT

Shear stress can result in fatigue, damage, and irreversible deformation of the mandibular condylar cartilage. However, little information is available on its dynamic properties in shear. We tested the hypothesis that the dynamic shear properties of the condylar cartilage depend on the frequency and amplitude of shear strain. Ten porcine mandibular condyles were used for dynamic shear tests. Two cartilage-bone plugs were dissected from each condyle and tested in a simple shear sandwich configuration under a compressive strain of 10%. Sinusoidal shear strain was applied with an amplitude of 1.0, 2.0, and 3.0% and a frequency range between 0.01 and 10 Hz. The magnitudes of the shear dynamic moduli were found to be dependent on the frequency and the shear strain amplitude. They increased with shear strain. tan delta ranged from 0.2 to 0.4, which means that the cartilage is primarily elastic in nature and has a small but not negligible viscosity. In conclusion, the present results show that the shear behavior of the mandibular condylar cartilage is dependent on the frequency and amplitude of the applied shear strain. The observed shear characteristics suggest a significant role of shear strain on the interstitial fluid flow within the cartilage.


Subject(s)
Bone and Bones/physiology , Cartilage/physiology , Mandibular Condyle/physiology , Shear Strength , Animals , Biomechanical Phenomena , Stress, Mechanical , Swine
4.
Ann Biomed Eng ; 34(12): 1917-23, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17063388

ABSTRACT

The role of the periodontal ligament (PDL) is to support the tooth during function and resist external forces applied to it. The dominant vertical component of these forces is associated with shear in the PDL. The mechanical response to vertical force may, however, be different between the molar and incisor as their loading regimen is different. The present study was designed to determine the viscoelastic behavior in shear of the PDL of the porcine molar and incisor (n = 10 for each). From dissected mandibles transverse sections including the mesial root of first molar and the incisal root were obtained and used for dynamic shear tests. Shear strain of 1.0% was applied in superoinferior direction parallel to the root axis with a wide range of frequencies (0.01-100 Hz). The viscoelastic behavior was characterized by the storage and loss modulus and loss tangent as a function of the frequency. For the incisor and molar, the complex and storage moduli increased significantly with the frequency. For the incisor, the loss modulus also increased with the frequency. The loss modulus and loss tangent were significantly (p < 0.05) larger in the incisor than in the molar. The present results suggest that the incisal PDL revealed more viscous behavior during dynamic shear than the molar one, which might have important implications for the principal role of the anterior teeth such as PDL sensation.


Subject(s)
Dental Stress Analysis , Incisor , Molar , Animals , Periodontal Ligament , Shear Strength , Stress, Mechanical , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...